IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v102y2015i2p457-477..html
   My bibliography  Save this article

On the degrees of freedom of reduced-rank estimators in multivariate regression

Author

Listed:
  • A. Mukherjee
  • K. Chen
  • N. Wang
  • J. Zhu

Abstract

We study the effective degrees of freedom of a general class of reduced-rank estimators for multivariate regression in the framework of Stein's unbiased risk estimation. A finite-sample exact unbiased estimator is derived that admits a closed-form expression in terms of the thresholded singular values of the least-squares solution and hence is readily computable. The results continue to hold in the high-dimensional setting where both the predictor and the response dimensions may be larger than the sample size. The derived analytical form facilitates the investigation of theoretical properties and provides new insights into the empirical behaviour of the degrees of freedom. In particular, we examine the differences and connections between the proposed estimator and a commonly-used naive estimator. The use of the proposed estimator leads to efficient and accurate prediction risk estimation and model selection, as demonstrated by simulation studies and a data example.

Suggested Citation

  • A. Mukherjee & K. Chen & N. Wang & J. Zhu, 2015. "On the degrees of freedom of reduced-rank estimators in multivariate regression," Biometrika, Biometrika Trust, vol. 102(2), pages 457-477.
  • Handle: RePEc:oup:biomet:v:102:y:2015:i:2:p:457-477.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asu067
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Izenman, Alan Julian, 1975. "Reduced-rank regression for the multivariate linear model," Journal of Multivariate Analysis, Elsevier, vol. 5(2), pages 248-264, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Goh, Gyuhyeong & Dey, Dipak K. & Chen, Kun, 2017. "Bayesian sparse reduced rank multivariate regression," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 14-28.
    2. Matsuda, Takeru & Strawderman, William E., 2019. "Improved loss estimation for a normal mean matrix," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 300-311.
    3. Nitis Mukhopadhyay, 2021. "On Rereading Stein’s Lemma: Its Intrinsic Connection with Cramér-Rao Identity and Some New Identities," Methodology and Computing in Applied Probability, Springer, vol. 23(1), pages 355-367, March.
    4. James Younker, 2022. "Calculating Effective Degrees of Freedom for Forecast Combinations and Ensemble Models," Discussion Papers 2022-19, Bank of Canada.
    5. Kohei Yoshikawa & Shuichi Kawano, 2023. "Sparse reduced-rank regression for simultaneous rank and variable selection via manifold optimization," Computational Statistics, Springer, vol. 38(1), pages 53-75, March.
    6. Yang, Yuehan & Xia, Siwei & Yang, Hu, 2023. "Multivariate sparse Laplacian shrinkage for joint estimation of two graphical structures," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    7. Guillaume Allaire Pouliot & Zhen Xie, 2022. "Degrees of Freedom and Information Criteria for the Synthetic Control Method," Papers 2207.02943, arXiv.org.
    8. Luo, Chongliang & Liang, Jian & Li, Gen & Wang, Fei & Zhang, Changshui & Dey, Dipak K. & Chen, Kun, 2018. "Leveraging mixed and incomplete outcomes via reduced-rank modeling," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 378-394.
    9. Hansen, Niels Richard, 2018. "On Stein’s unbiased risk estimate for reduced rank estimators," Statistics & Probability Letters, Elsevier, vol. 135(C), pages 76-82.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alain-Philippe Fortin & Patrick Gagliardini & O. Scaillet, 2022. "Eigenvalue tests for the number of latent factors in short panels," Swiss Finance Institute Research Paper Series 22-81, Swiss Finance Institute.
    2. Hansen, Peter Reinhard, 2003. "Structural changes in the cointegrated vector autoregressive model," Journal of Econometrics, Elsevier, vol. 114(2), pages 261-295, June.
    3. Bura, Efstathia & Cook, R. Dennis, 2003. "Rank estimation in reduced-rank regression," Journal of Multivariate Analysis, Elsevier, vol. 87(1), pages 159-176, October.
    4. Chen, Canyi & Xu, Wangli & Zhu, Liping, 2022. "Distributed estimation in heterogeneous reduced rank regression: With application to order determination in sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    5. Andrés García-Medina & Graciela González Farías, 2020. "Transfer entropy as a variable selection methodology of cryptocurrencies in the framework of a high dimensional predictive model," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-31, January.
    6. Bin Jiang & Anastasios Panagiotelis & George Athanasopoulos & Rob Hyndman & Farshid Vahid, 2016. "Bayesian Rank Selection in Multivariate Regression," Monash Econometrics and Business Statistics Working Papers 6/16, Monash University, Department of Econometrics and Business Statistics.
    7. Takane, Yoshio & Hwang, Heungsun, 2005. "An extended redundancy analysis and its applications to two practical examples," Computational Statistics & Data Analysis, Elsevier, vol. 49(3), pages 785-808, June.
    8. Gilbert, Scott & Zemcík, Petr, 2006. "Who's afraid of reduced-rank parameterizations of multivariate models? Theory and example," Journal of Multivariate Analysis, Elsevier, vol. 97(4), pages 925-945, April.
    9. Zhou, Guofu, 1995. "Small sample rank tests with applications to asset pricing," Journal of Empirical Finance, Elsevier, vol. 2(1), pages 71-93, March.
    10. Seokhyun Chung & Raed Al Kontar & Zhenke Wu, 2022. "Weakly Supervised Multi-output Regression via Correlated Gaussian Processes," INFORMS Joural on Data Science, INFORMS, vol. 1(2), pages 115-137, October.
    11. Ben Deaner, 2021. "Many Proxy Controls," Papers 2110.03973, arXiv.org.
    12. Carlos Enrique Carrasco Gutiérrez & Reinaldo Castro Souza & Osmani Teixeira de Carvalho Guillén, 2007. "Selection of Optimal Lag Length in Cointegrated VAR Models with Weak Form of Common Cyclical Features," Working Papers Series 139, Central Bank of Brazil, Research Department.
    13. Wayne DeSarbo & Heungsun Hwang & Ashley Stadler Blank & Eelco Kappe, 2015. "Constrained Stochastic Extended Redundancy Analysis," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 516-534, June.
    14. Pierre O. Boucher & Tian Wang & Laura Carceroni & Gary Kane & Krishna V. Shenoy & Chandramouli Chandrasekaran, 2023. "Initial conditions combine with sensory evidence to induce decision-related dynamics in premotor cortex," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    15. Fujikoshi, Yasunori & Sakurai, Tetsuro, 2016. "High-dimensional consistency of rank estimation criteria in multivariate linear model," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 199-212.
    16. Dong, Ruipeng & Li, Daoji & Zheng, Zemin, 2021. "Parallel integrative learning for large-scale multi-response regression with incomplete outcomes," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
    17. Xing Gao & Sungwon Lee & Gen Li & Sungkyu Jung, 2021. "Covariate‐driven factorization by thresholding for multiblock data," Biometrics, The International Biometric Society, vol. 77(3), pages 1011-1023, September.
    18. Dmitry Kobak & Yves Bernaerts & Marissa A. Weis & Federico Scala & Andreas S. Tolias & Philipp Berens, 2021. "Sparse reduced‐rank regression for exploratory visualisation of paired multivariate data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 980-1000, August.
    19. Canhong Wen & Zhenduo Li & Ruipeng Dong & Yijin Ni & Wenliang Pan, 2023. "Simultaneous Dimension Reduction and Variable Selection for Multinomial Logistic Regression," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1044-1060, September.
    20. Christian Grussler & Pontus Giselsson, 2022. "Efficient Proximal Mapping Computation for Low-Rank Inducing Norms," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 168-194, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:102:y:2015:i:2:p:457-477.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.