IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v100y2013i1p189-202.html
   My bibliography  Save this article

Benchmarking small area estimators

Author

Listed:
  • W. R. Bell
  • G. S. Datta
  • M. Ghosh

Abstract

This paper considers benchmarking issues in the context of small area estimation. We find optimal estimators within the class of benchmarked linear estimators under linear constraints. This extends existing results for external and internal benchmarking, and also links the two. Necessary and sufficient conditions for self-benchmarking are found for an augmented model. Most results of this paper are found using ideas of orthogonal projection Copyright 2013, Oxford University Press.

Suggested Citation

  • W. R. Bell & G. S. Datta & M. Ghosh, 2013. "Benchmarking small area estimators," Biometrika, Biometrika Trust, vol. 100(1), pages 189-202.
  • Handle: RePEc:oup:biomet:v:100:y:2013:i:1:p:189-202
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/ass063
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rebecca C. Steorts & Timo Schmid & Nikos Tzavidis, 2020. "Smoothing and Benchmarking for Small Area Estimation," International Statistical Review, International Statistical Institute, vol. 88(3), pages 580-598, December.
    2. Malay Ghosh & Tatsuya Kubokawa & Yuki Kawakubo, 2014. "Benchmarked Empirical Bayes Methods in Multiplicative Area-level Models with Risk Evaluation," CIRJE F-Series CIRJE-F-918, CIRJE, Faculty of Economics, University of Tokyo.
    3. Ghosh Malay, 2020. "Small area estimation: its evolution in five decades," Statistics in Transition New Series, Statistics Poland, vol. 21(4), pages 1-22, August.
    4. Marius Stefan & Michael Hidiroglou, 2021. "Benchmarked Estimators for a Small Area Mean Under a Onefold Nested Regression Model," International Statistical Review, International Statistical Institute, vol. 89(1), pages 108-131, April.
    5. Malay Ghosh, 2020. "Small area estimation: its evolution in five decades," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 1-22, August.
    6. Maria Rosaria Ferrante & Silvia Pacei, 2017. "Small domain estimation of business statistics by using multivariate skew normal models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 1057-1088, October.
    7. Zhang Junni L. & Bryant John, 2020. "Fully Bayesian Benchmarking of Small Area Estimation Models," Journal of Official Statistics, Sciendo, vol. 36(1), pages 197-223, March.
    8. Benavent, Roberto & Morales, Domingo, 2016. "Multivariate Fay–Herriot models for small area estimation," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 372-390.
    9. Arthur Acolin & Ari Decter-Frain & Matt Hall, 2022. "Small-area estimates from consumer trace data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 47(27), pages 843-882.
    10. Rebecca Steorts & M. Ugarte, 2014. "Comments on: “Single and two-stage cross-sectional and time series benchmarking procedures for small area estimation”," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 680-685, December.
    11. Ryan Janicki & Andrew Vesper, 2017. "Benchmarking techniques for reconciling Bayesian small area models at distinct geographic levels," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(4), pages 557-581, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:100:y:2013:i:1:p:189-202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.