IDEAS home Printed from https://ideas.repec.org/a/oec/stdkab/5ksnlxpf68jb.html
   My bibliography  Save this article

An optimized forecast specification for economic activity: An automated discovery approach using a genetic algorithm

Author

Listed:
  • Bernd Brandl

Abstract

Finding a good forecasting model in a data-rich environment is a complex problem which challenges forecasters and statistical methods. In such an environment, automated modelling strategies are necessary for an efficient use of the information in the data. In contrast to frequently applied methods used for large data sets we propose a model selection approach for dynamic single equation regressions that are used to make forecasts. This paper proposes a new approach for quantitative forecasting that is able to deal with both an increasing number of variables that are potentially important for forecasting, as well as an increasing number of observations simultaneously. Another characteristic of the proposed approach is that evaluation of the goodness of forecast models is based on different criteria. As we are interested in finding forecast models with high-quality criteria we define the search for a forecast model as a multi-criteria optimization problem. We define the quality criteria in our goal function by in-sample measures and out-of-sample measures, as well as by a balance between them, and apply a genetic algorithm to solve this complex, global and discrete multi-criteria optimization problem. The efficiency of the approach is illustrated by forecasting German industrial production based on a data set containing key economic indicators and leading indicators. It is shown that, for short forecast horizons, the proposed approach provides forecasts with a high accuracy.

Suggested Citation

  • Bernd Brandl, 2009. "An optimized forecast specification for economic activity: An automated discovery approach using a genetic algorithm," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2008(1), pages 9-36.
  • Handle: RePEc:oec:stdkab:5ksnlxpf68jb
    DOI: 10.1787/jbcma-v2008-art2-en
    as

    Download full text from publisher

    File URL: https://doi.org/10.1787/jbcma-v2008-art2-en
    Download Restriction: Full text available to READ online. PDF download available to OECD iLibrary subscribers.

    File URL: https://libkey.io/10.1787/jbcma-v2008-art2-en?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oec:stdkab:5ksnlxpf68jb. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/oecddfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.