IDEAS home Printed from https://ideas.repec.org/a/oec/stdkaa/5lmqcr2jfbbq.html
   My bibliography  Save this article

Detection of Turning Points in Business Cycles

Author

Listed:
  • Eva Andersson
  • David Bock
  • Marianne Frisén

Abstract

Methods for continuously monitoring business cycles are compared. A turn in a leading index can be used to predict a turn in the business cycle. Three likelihood based methods for turning point detection are compared in detail by using the theory of statistical surveillance and by simulations. One of the methods is a parametric likelihood ratio method. Another includes a non-parametric estimation procedure. The third is based on a Hidden Markov Model. Evaluations are made of several features such as knowledge of shape and parameters of the curve, types and probabilities of transitions and smoothing. Results on the expected delay time [of](to) a correct alarm and the predictive value of an alarm are discussed...

Suggested Citation

  • Eva Andersson & David Bock & Marianne Frisén, 2004. "Detection of Turning Points in Business Cycles," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2004(1), pages 93-108.
  • Handle: RePEc:oec:stdkaa:5lmqcr2jfbbq
    DOI: 10.1787/jbcma-v2004-art6-en
    as

    Download full text from publisher

    File URL: https://doi.org/10.1787/jbcma-v2004-art6-en
    Download Restriction: Full text available to READ online. PDF download available to OECD iLibrary subscribers.

    File URL: https://libkey.io/10.1787/jbcma-v2004-art6-en?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Klaus Abberger, 2004. "Nonparametric Regression and the Detection of Turning Points in the Ifo Business Climate," CESifo Working Paper Series 1283, CESifo.
    2. Benoit Bellone, 2004. "Une lecture probabiliste du cycle d’affaires américain," Econometrics 0407002, University Library of Munich, Germany, revised 28 Mar 2005.
    3. Kajal Lahiri & Yongchen Zhao, 2016. "Determinants of Consumer Sentiment Over Business Cycles: Evidence from the US Surveys of Consumers," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(2), pages 187-215, December.
    4. Bock, David & Pettersson, Kjell, 2007. "Explorative analysis of spatial aspects on the Swedish influenza data," Research Reports 2007:10, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    5. Bock, David, 2007. "Evaluations of likelihood based surveillance of volatility," Research Reports 2007:9, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    6. Benoit Bellone, 2005. "Classical Estimation of Multivariate Markov-Switching Models using MSVARlib," Econometrics 0508017, University Library of Munich, Germany.
    7. Benoit Bellone & David Saint-Martin, 2004. "Detecting Turning Points with Many Predictors through Hidden Markov Models," Econometrics 0407001, University Library of Munich, Germany.
    8. Andersson, Eva, 2008. "Hotelling´s T2 Method in Multivariate On-line Surveillance. On the Delay of an Alarm," Research Reports 2008:3, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    9. Bock, David & Andersson, Eva & Frisén, Marianne, 2007. "Statistical Surveillance of Epidemics: Peak Detection of Influenza in Sweden," Research Reports 2007:6, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    10. Andersson, Eva, 2007. "Effect of dependency in systems for multivariate surveillance," Research Reports 2007:1, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    11. Benoît Bellone, 2006. "Une lecture probabiliste du cycle d’affaires américain," Économie et Prévision, Programme National Persée, vol. 172(1), pages 63-81.
    12. Bodnar, Olha & Bodnar, Taras & Okhrin, Yarema, 2009. "Surveillance of the covariance matrix based on the properties of the singular Wishart distribution," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3372-3385, July.
    13. Benoit Bellone, 2004. "MSVARlib: a new Gauss library to estimate multivariate Hidden Markov Models," Econometrics 0406004, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oec:stdkaa:5lmqcr2jfbbq. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/oecddfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.