IDEAS home Printed from https://ideas.repec.org/a/nos/social/y2018i2p9-18.html
   My bibliography  Save this article

Economic Efficiency Of Using Solar Energy In The Agroindustrial Business

Author

Listed:
  • Uniіat, Lіudmyla

    (Ternopil National Economic University)

Abstract

Under conditions of limited organic resources, polluted external environment, excessive emission of carbon in the atmosphere and as a result of global warming the use of renewed energy sources may become one of ways of solving problems of energy saving, energy efficiency, environment protection, energy independence from import raw materials. The active use of renewed energy sources will favor the increase of economic efficiency and competitiveness of components of the national AIC. The article indicates that during the last 20 years the world underwent worsening of natural-climatic and living conditions, climate change, strengthening of negative natural phenomena and so on. The aforesaid problems of the world scale were discussed at the international climatic conferences (Brazil – 1992; Japan – 1997; SAR – 2002; Paris – 2015; Germany – 2017), while considering the complex of questions as to improving the natural-climatic and living environment in the world, saving use of natural resources, acceleration of using renewable energy sources (RES), especially solar one. It was elucidated, that during the last years the power of solar energy stations (SPS) grew essentially. For the end of 2015 the leaders if setting SPS were the following countries: China, Germany, Japan, USA. In Ukraine the plan of development of the Combined energetic system for 2016–2025 years of SE «NEC «Ukrenergo»» provided the association of SPS power with electric nets of energy system with volume 1641.2 MW. There was realized the grouping of Ukrainian regions by the level of the technically achievable potential of solar energy. There was realized the assessment of the economic efficiency of products at using solar energy in the agroindustrial business in different regional conditions of Ukraine.

Suggested Citation

  • Uniіat, Lіudmyla, 2018. "Economic Efficiency Of Using Solar Energy In The Agroindustrial Business," EUREKA: Social and Humanities, Scientific Route OÜ, issue 2, pages 9-18.
  • Handle: RePEc:nos:social:y:2018:i:2:p:9-18
    as

    Download full text from publisher

    File URL: http://eu-jr.eu/social/article/viewFile/609/571.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Perpiña Castillo, Carolina & Batista e Silva, Filipe & Lavalle, Carlo, 2016. "An assessment of the regional potential for solar power generation in EU-28," Energy Policy, Elsevier, vol. 88(C), pages 86-99.
    2. Timilsina, Govinda R. & Kurdgelashvili, Lado & Narbel, Patrick A., 2011. "A review of solar energy : markets, economics and policies," Policy Research Working Paper Series 5845, The World Bank.
    3. Halkos, George & Tzeremes, Nickolaos, 2013. "Renewable energy consumption and economic efficiency: Evidence from European countries," MPRA Paper 44136, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sener, Can & Fthenakis, Vasilis, 2014. "Energy policy and financing options to achieve solar energy grid penetration targets: Accounting for external costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 854-868.
    2. Marco Rogna, 2019. "A First-Phase Screening Device for Site Selection of Large-Scale Solar Plants with an Application to Italy," BEMPS - Bozen Economics & Management Paper Series BEMPS57, Faculty of Economics and Management at the Free University of Bozen.
    3. Nasrin Aghamohammadi & Stacy Simai Reginald & Ahmad Shamiri & Ali Akbar Zinatizadeh & Li Ping Wong & Nik Meriam Binti Nik Sulaiman, 2016. "An Investigation of Sustainable Power Generation from Oil Palm Biomass: A Case Study in Sarawak," Sustainability, MDPI, vol. 8(5), pages 1-19, April.
    4. Aina Maimó-Far & Alexis Tantet & Víctor Homar & Philippe Drobinski, 2020. "Predictable and Unpredictable Climate Variability Impacts on Optimal Renewable Energy Mixes: The Example of Spain," Energies, MDPI, vol. 13(19), pages 1-25, October.
    5. Punia Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2016. "Recognition and prioritization of challenges in growth of solar energy using analytical hierarchy process: Indian outlook," Energy, Elsevier, vol. 100(C), pages 332-348.
    6. Marc Audi & Marc Poulin & Amjad Ali, 2024. "Environmental Impact of Business Freedom and Renewable Energy: A Global Perspective," International Journal of Energy Economics and Policy, Econjournals, vol. 14(3), pages 672-683, May.
    7. Karunathilake, Hirushie & Hewage, Kasun & Mérida, Walter & Sadiq, Rehan, 2019. "Renewable energy selection for net-zero energy communities: Life cycle based decision making under uncertainty," Renewable Energy, Elsevier, vol. 130(C), pages 558-573.
    8. Shilei Lu & Minchao Fan & Yiqun Zhao, 2018. "A System to Pre-Evaluate the Suitability of Energy-Saving Technology for Green Buildings," Sustainability, MDPI, vol. 10(10), pages 1-19, October.
    9. Gandoman, Foad H. & Abdel Aleem, Shady H.E. & Omar, Noshin & Ahmadi, Abdollah & Alenezi, Faisal Q., 2018. "Short-term solar power forecasting considering cloud coverage and ambient temperature variation effects," Renewable Energy, Elsevier, vol. 123(C), pages 793-805.
    10. Kim, Soullam & Lee, Yuhwa & Moon, Hak-Ryong, 2018. "Siting criteria and feasibility analysis for PV power generation projects using road facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3061-3069.
    11. Alexandra Vrînceanu & Ines Grigorescu & Monica Dumitrașcu & Irena Mocanu & Cristina Dumitrică & Dana Micu & Gheorghe Kucsicsa & Bianca Mitrică, 2019. "Impacts of Photovoltaic Farms on the Environment in the Romanian Plain," Energies, MDPI, vol. 12(13), pages 1-18, July.
    12. Reichelstein, Stefan & Yorston, Michael, 2013. "The prospects for cost competitive solar PV power," Energy Policy, Elsevier, vol. 55(C), pages 117-127.
    13. Michał Mierzwiak & Krzysztof Kroszczyński & Andrzej Araszkiewicz, 2022. "On Solar Radiation Prediction for the East–Central European Region," Energies, MDPI, vol. 15(9), pages 1-20, April.
    14. Hossein Yousefi & Hamed Hafeznia & Amin Yousefi-Sahzabi, 2018. "Spatial Site Selection for Solar Power Plants Using a GIS-Based Boolean-Fuzzy Logic Model: A Case Study of Markazi Province, Iran," Energies, MDPI, vol. 11(7), pages 1-18, June.
    15. Imad Hassan & Ibrahim Alhamrouni & Nurul Hanis Azhan, 2023. "A CRITIC–TOPSIS Multi-Criteria Decision-Making Approach for Optimum Site Selection for Solar PV Farm," Energies, MDPI, vol. 16(10), pages 1-26, May.
    16. Tlhalerwa, Keabile & Mulalu, Mulalu, 2019. "Assessment of the concentrated solar power potential in Botswana," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 294-306.
    17. Conceição, Ricardo & Silva, Hugo G. & Fialho, Luis & Lopes, Francis M. & Collares-Pereira, Manuel, 2019. "PV system design with the effect of soiling on the optimum tilt angle," Renewable Energy, Elsevier, vol. 133(C), pages 787-796.
    18. Doda, Baran & Fankhauser, Sam, 2020. "Climate policy and power producers: The distribution of pain and gain," Energy Policy, Elsevier, vol. 138(C).
    19. Absi Halabi, M. & Al-Qattan, A. & Al-Otaibi, A., 2015. "Application of solar energy in the oil industry—Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 296-314.
    20. Botelho, Anabela & Lourenço-Gomes, Lina & Pinto, Lígia & Sousa, Sara & Valente, Marieta, 2017. "Accounting for local impacts of photovoltaic farms: The application of two stated preferences approaches to a case-study in Portugal," Energy Policy, Elsevier, vol. 109(C), pages 191-198.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nos:social:y:2018:i:2:p:9-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Helen Klimashevska (email available below). General contact details of provider: http://eu-jr.eu/social .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.