IDEAS home Printed from https://ideas.repec.org/a/nea/journl/y2022i55p139-154.html
   My bibliography  Save this article

Cost of achieving zero CO2 emissions by mid-century: Approach and estimation for the world largest economies

Author

Listed:
  • Kolpakov, A.

    (Institute of Economic Forecasting, Russian Academy of Sciences, Moscow, Russia)

  • Yantovskii, A.

    (Institute of Economic Forecasting, Russian Academy of Sciences, Moscow, Russia)

  • Galinger, A.

    (Institute of Economic Forecasting, Russian Academy of Sciences, Moscow, Russia)

Abstract

The article presents a methodological approach to assessing the cost of energy for the world economy in ambitious scenarios for reducing CO2 emissions associated with energy consumption. The approach takes into account that large-scale replacement of fossil fuels with electricity generated from renewable energy sources: a) should be accompanied by the grid development and the deployment of reserve storage capacities and hydrogen technologies; b) requires the use of mechanisms for projects payback, which are included in the final prices for electricity; c) will create the need to replace the shortfall in budget revenues from the production and consumption of hydrocarbon fuels. Forecast calculations show that the scenario of achieving zero emissions in the middle of the XXI century may turn out to be unstable, since it is characterized by increase in the cost of energy supply to the world economy by 40% compared to the current level, and the ratio of energy costs to GDP will exceed 13% in certain periods, and for some countries (including Russia) - 15%. For the global economy to remain within its solvency limits, hydrocarbons should play a decisive role in energy supply for another two decades, but the growth in energy demand can increasingly be met with the help of carbon-free solutions.

Suggested Citation

  • Kolpakov, A. & Yantovskii, A. & Galinger, A., 2022. "Cost of achieving zero CO2 emissions by mid-century: Approach and estimation for the world largest economies," Journal of the New Economic Association, New Economic Association, vol. 55(3), pages 139-154.
  • Handle: RePEc:nea:journl:y:2022:i:55:p:139-154
    DOI: 10.31737/2221-2264-2022-55-3-7
    as

    Download full text from publisher

    File URL: http://www.econorus.org/repec/journl/2022-55-139-154r.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.31737/2221-2264-2022-55-3-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Steffen, Bjarne, 2020. "Estimating the cost of capital for renewable energy projects," Energy Economics, Elsevier, vol. 88(C).
    2. Veselov, Fedor & Pankrushina, Tatiana & Khorshev, Andrey, 2021. "Comparative economic analysis of technological priorities for low-carbon transformation of electric power industry in Russia and the EU," Energy Policy, Elsevier, vol. 156(C).
    3. I. Bashmakov., 2006. "Oil Prices: Limits to Growth and the Depth of Falling," VOPROSY ECONOMIKI, N.P. Redaktsiya zhurnala "Voprosy Economiki", vol. 3.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mikhail Andreyev & Alyona Nelyubina, 2024. "Energy transition scenarios in Russia: effects in macroeconomic general equilibrium model with rational expectations," Bank of Russia Working Paper Series wps122, Bank of Russia.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gumber, Anurag & Zana, Riccardo & Steffen, Bjarne, 2024. "A global analysis of renewable energy project commissioning timelines," Applied Energy, Elsevier, vol. 358(C).
    2. Sharma, Rajesh & Shahbaz, Muhammad & Sinha, Avik & Vo, Xuan Vinh, 2021. "Examining the temporal impact of stock market development on carbon intensity: Evidence from South Asian countries," MPRA Paper 108925, University Library of Munich, Germany, revised 2021.
    3. Luiz Moreira Coelho Junior & Amadeu Junior da Silva Fonseca & Roberto Castro & João Carlos de Oliveira Mello & Victor Hugo Ribeiro dos Santos & Renato Barros Pinheiro & Wilton Lima Sousa & Edvaldo Per, 2022. "Empirical Evidence of the Cost of Capital under Risk Conditions for Thermoelectric Power Plants in Brazil," Energies, MDPI, vol. 15(12), pages 1-12, June.
    4. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    5. Hashemi, Majid & Jenkins, Glenn & Milne, Frank, 2023. "Rooftop solar with net metering: An integrated investment appraisal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    6. Buschle, Julius & Anatolitis, Vasilios & Plötz, Patrick, 2024. "Empirical evidence on discrimination in multi-technology renewable energy auctions in Europe," Energy Policy, Elsevier, vol. 184(C).
    7. Waidelich, Paul & Steffen, Bjarne, 2024. "Renewable energy financing by state investment banks: Evidence from OECD countries," Energy Economics, Elsevier, vol. 132(C).
    8. Melliger, Marc, 2023. "Quantifying technology skewness in European multi-technology auctions and the effect of design elements and other driving factors," Energy Policy, Elsevier, vol. 175(C).
    9. Neill Bartie & Lucero Cobos‐Becerra & Florian Mathies & Janardan Dagar & Eva Unger & Magnus Fröhling & Markus A. Reuter & Rutger Schlatmann, 2023. "Cost versus environment? Combined life cycle, techno‐economic, and circularity assessment of silicon‐ and perovskite‐based photovoltaic systems," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 993-1007, June.
    10. Piotr W. Saługa & Krzysztof Zamasz & Zdzisława Dacko-Pikiewicz & Katarzyna Szczepańska-Woszczyna & Marcin Malec, 2021. "Risk-Adjusted Discount Rate and Its Components for Onshore Wind Farms at the Feasibility Stage," Energies, MDPI, vol. 14(20), pages 1-12, October.
    11. Ding, Yihong & Tan, Qinliang & Shan, Zijing & Han, Jian & Zhang, Yimei, 2023. "A two-stage dispatching optimization strategy for hybrid renewable energy system with low-carbon and sustainability in ancillary service market," Renewable Energy, Elsevier, vol. 207(C), pages 647-659.
    12. Emanuele Campiglio & Alessandro Spiganti & Anthony Wiskich, 2023. "Clean innovation and heterogeneous financing costs," Working Papers 2023: 07, Department of Economics, University of Venice "Ca' Foscari".
    13. Hemrit, Wael & Benlagha, Noureddine, 2021. "Does renewable energy index respond to the pandemic uncertainty?," Renewable Energy, Elsevier, vol. 177(C), pages 336-347.
    14. Hossein Heirani & Naser Bagheri Moghaddam & Sina Labbafi & Seyedali Sina, 2022. "A Business Model for Developing Distributed Photovoltaic Systems in Iran," Sustainability, MDPI, vol. 14(18), pages 1-21, September.
    15. Stocker Klaus, 2020. "Financial and Economic Assessment of Tidal Stream Energy—A Case Study," IJFS, MDPI, vol. 8(3), pages 1-20, August.
    16. Hossein Madi & Dmytro Lytvynenko & Tilman Schildhauer & Peter Jansohn, 2023. "Decarbonisation of Geographical Islands and the Feasibility of Green Hydrogen Production Using Excess Electricity," Energies, MDPI, vol. 16(10), pages 1-18, May.
    17. Candas, Soner & Reveron Baecker, Beneharo & Mohapatra, Anurag & Hamacher, Thomas, 2023. "Optimization-based framework for low-voltage grid reinforcement assessment under various levels of flexibility and coordination," Applied Energy, Elsevier, vol. 343(C).
    18. Mosquera-López, Stephania & Uribe, Jorge M., 2022. "Pricing the risk due to weather conditions in small variable renewable energy projects," Applied Energy, Elsevier, vol. 322(C).
    19. Steffen, Bjarne & Karplus, Valerie & Schmidt, Tobias S., 2022. "State ownership and technology adoption: The case of electric utilities and renewable energy," Research Policy, Elsevier, vol. 51(6).
    20. Santhakumar, Srinivasan & Meerman, Hans & Faaij, André, 2024. "Future costs of key emerging offshore renewable energy technologies," Renewable Energy, Elsevier, vol. 222(C).

    More about this item

    Keywords

    CO2; emissions; renewable energy; energy price; investments; Paris Agreement;
    All these keywords.

    JEL classification:

    • O5 - Economic Development, Innovation, Technological Change, and Growth - - Economywide Country Studies
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • Q01 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Sustainable Development
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nea:journl:y:2022:i:55:p:139-154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alexey Tcharykov (email available below). General contact details of provider: https://edirc.repec.org/data/nearuea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.