IDEAS home Printed from https://ideas.repec.org/a/nea/journl/y2015i28p12-30.html
   My bibliography  Save this article

Dynamics of Cluster Structures in Stock Market Networks

Author

Listed:
  • Kocheturov, A.

    (Center for Applied Optimization, University of Florida, USA)

  • Batsyn, M.

    (NRU HSE, Nizhny Novgorod, Russia)

  • Pardalos, P.

    (NRU HSE, Nizhny Novgorod, Russia
    Center for Applied Optimization, University of Florida, USA)

Abstract

In recent 15 years network analysis has been actively applied for studying financial markets. In this paper we present a network-based analysis of stock markets of USA and Sweden. We extract and study special cluster structures of networks built from correlation matrices of stock returns for these stock markets. A cluster structure of a network is extracted by solving the p-median problem which chooses p central stocks (medians) and partitions all stocks into p clusters around these medians - centers. The objective function maximizes the sum of correlations between each stock and the median of its cluster. The obtained cluster structure is represented by an undirected disconnected weighted graph, which components are star-graphs with one central vertex (median) and several leaf vertices connected only with the median by weighted edges. Our main observation is that in non-crisis periods cluster structures of stock market networks change more chaotically, while during crises they demonstrate more stable behavior and smaller changes. Thus an increase in stability of the cluster structure for a stock market network obtained by means of the p-median problem solution can serve as an indicator of a coming crisis.

Suggested Citation

  • Kocheturov, A. & Batsyn, M. & Pardalos, P., 2015. "Dynamics of Cluster Structures in Stock Market Networks," Journal of the New Economic Association, New Economic Association, vol. 28(4), pages 12-30.
  • Handle: RePEc:nea:journl:y:2015:i:28:p:12-30
    as

    Download full text from publisher

    File URL: http://www.econorus.org/repec/journl/2015-28-12-30r.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fuad Aleskerov & Boris Goldengorin & Panos M. Pardalos (ed.), 2014. "Clusters, Orders, and Trees: Methods and Applications," Springer Optimization and Its Applications, Springer, edition 127, number 978-1-4939-0742-7, June.
    2. Onnela, J.-P. & Chakraborti, A. & Kaski, K. & Kertész, J., 2003. "Dynamic asset trees and Black Monday," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 247-252.
    3. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    4. Tabak, Benjamin M. & Takami, Marcelo & Rocha, Jadson M.C. & Cajueiro, Daniel O. & Souza, Sergio R.S., 2014. "Directed clustering coefficient as a measure of systemic risk in complex banking networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 211-216.
    5. Boris Goldengorin & Anton Kocheturov & Panos M. Pardalos, 2014. "A Pseudo-Boolean Approach to the Market Graph Analysis by Means of the p-Median Model," Springer Optimization and Its Applications, in: Fuad Aleskerov & Boris Goldengorin & Panos M. Pardalos (ed.), Clusters, Orders, and Trees: Methods and Applications, edition 127, pages 77-89, Springer.
    6. Giuseppe Buccheri & Stefano Marmi & Rosario N. Mantegna, 2013. "Evolution of correlation structure of industrial indices of US equity markets," Papers 1306.4769, arXiv.org.
    7. Papadimitriou, Theophilos & Gogas, Periklis & Tabak, Benjamin M., 2013. "Complex networks and banking systems supervision," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4429-4434.
    8. Cajueiro, Daniel O. & Tabak, Benjamin M., 2008. "The role of banks in the Brazilian interbank market: Does bank type matter?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(27), pages 6825-6836.
    9. Jung, Woo-Sung & Chae, Seungbyung & Yang, Jae-Suk & Moon, Hie-Tae, 2006. "Characteristics of the Korean stock market correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 361(1), pages 263-271.
    10. Huang, Wei-Qiang & Zhuang, Xin-Tian & Yao, Shuang, 2009. "A network analysis of the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2956-2964.
    11. Tabak, Benjamin M. & Serra, Thiago R. & Cajueiro, Daniel O., 2010. "Topological properties of stock market networks: The case of Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3240-3249.
    12. Dror Y. Kenett & Yoash Shapira & Asaf Madi & Sharron Bransburg-Zabary & Gitit Gur-Gershgoren & Eshel Ben-Jacob, 2010. "Dynamics of Stock Market Correlations," Czech Economic Review, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, vol. 4(3), pages 330-340, November.
    13. Çukur, Sadik & Eryiğit, Mehmet & Eryiğit, Resul, 2007. "Cross correlations in an emerging market financial data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 555-564.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    2. Sensoy, Ahmet & Tabak, Benjamin M., 2014. "Dynamic spanning trees in stock market networks: The case of Asia-Pacific," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 387-402.
    3. Tabak, Benjamin M. & Luduvice, André Victor D. & Cajueiro, Daniel O., 2011. "Modeling default probabilities: The case of Brazil," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 21(4), pages 513-534, October.
    4. Výrost, Tomáš & Lyócsa, Štefan & Baumöhl, Eduard, 2015. "Granger causality stock market networks: Temporal proximity and preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 262-276.
    5. Gogas, Periklis & Papadimitriou, Theophilos & Matthaiou, Maria-Artemis, 2016. "Bank supervision using the Threshold-Minimum Dominating Set," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 23-35.
    6. Seyed Soheil Hosseini & Nick Wormald & Tianhai Tian, 2019. "A Weight-based Information Filtration Algorithm for Stock-Correlation Networks," Papers 1904.06007, arXiv.org.
    7. Cheong, Siew Ann & Fornia, Robert Paulo & Lee, Gladys Hui Ting & Kok, Jun Liang & Yim, Woei Shyr & Xu, Danny Yuan & Zhang, Yiting, 2011. "The Japanese economy in crises: A time series segmentation study," Economics Discussion Papers 2011-24, Kiel Institute for the World Economy (IfW Kiel).
    8. Coletti, Paolo, 2016. "Comparing minimum spanning trees of the Italian stock market using returns and volumes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 246-261.
    9. Majapa, Mohamed & Gossel, Sean Joss, 2016. "Topology of the South African stock market network across the 2008 financial crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 35-47.
    10. Lyócsa, Štefan & Výrost, Tomáš & Baumöhl, Eduard, 2019. "Return spillovers around the globe: A network approach," Economic Modelling, Elsevier, vol. 77(C), pages 133-146.
    11. Hosseini, Seyed Soheil & Wormald, Nick & Tian, Tianhai, 2021. "A Weight-based Information Filtration Algorithm for Stock-correlation Networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    12. Wang, Gang-Jin & Xie, Chi & Han, Feng & Sun, Bo, 2012. "Similarity measure and topology evolution of foreign exchange markets using dynamic time warping method: Evidence from minimal spanning tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4136-4146.
    13. Kalyagin, V. & Koldanov, A. & Koldanov, P. & Pardalos, P., 2017. "Statistical Procedures for Stock Markets Network Structures Identification," Journal of the New Economic Association, New Economic Association, vol. 35(3), pages 33-52.
    14. Zhang, Yiting & Lee, Gladys Hui Ting & Wong, Jian Cheng & Kok, Jun Liang & Prusty, Manamohan & Cheong, Siew Ann, 2011. "Will the US economy recover in 2010? A minimal spanning tree study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2020-2050.
    15. Kartikay Gupta & Niladri Chatterjee, 2020. "Examining Lead-Lag Relationships In-Depth, With Focus On FX Market As Covid-19 Crises Unfolds," Papers 2004.10560, arXiv.org, revised May 2020.
    16. Gang-Jin Wang & Chi Xie & Shou Chen, 2017. "Multiscale correlation networks analysis of the US stock market: a wavelet analysis," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(3), pages 561-594, October.
    17. Leonidas Sandoval Junior, 2014. "Dynamics in two networks based on stocks of the US stock market," Papers 1408.1728, arXiv.org, revised Aug 2014.
    18. Tabak, Benjamin M. & Serra, Thiago R. & Cajueiro, Daniel O., 2010. "Topological properties of stock market networks: The case of Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3240-3249.
    19. Djauhari, Maman Abdurachman & Gan, Siew Lee, 2015. "Optimality problem of network topology in stocks market analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 108-114.
    20. Peralta, Gustavo & Zareei, Abalfazl, 2016. "A network approach to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 38(PA), pages 157-180.

    More about this item

    Keywords

    dynamics; cluster structure; stock markets; p-median problem; clustering; crisis; network analysis;
    All these keywords.

    JEL classification:

    • C65 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Miscellaneous Mathematical Tools
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nea:journl:y:2015:i:28:p:12-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alexey Tcharykov (email available below). General contact details of provider: https://edirc.repec.org/data/nearuea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.