IDEAS home Printed from https://ideas.repec.org/a/nbp/nbpbik/v56y2024i4p459-478.html
   My bibliography  Save this article

Forecasting the yield curve for Poland with the PCA and machine learning

Author

Listed:
  • Tomasz Piotr Kostyra

    (Warsaw School of Economics)

Abstract

The article examines the application of the Principal Component Analysis (PCA) and machine learning method, the Long Short-Term Memory (LSTM), in the prediction of the yield curve for Poland. The PCA was applied to decompose the yield curve, forecast its components using the LSTM, and obtain the yield curve predictions upon recomposition. The results from the PCA-LSTM model were compared to predictions generated directly by the LSTM model, simple autoregression and random walk, which serves as a benchmark. Overall, LSTM predictions are the most accurate with PCA-LSTM being a close second, nonetheless PCA-LSTM is more accurate in short-term forecasting of interest rates at long maturities. Both methods outperform the benchmark, while autoregression usually underperforms. For these reasons, the PCA-LSTM as well as the LSTM can be useful in interest rate management or building trading strategies. The PCA-LSTM has the advantage that it can focus on particular components of the yield curve, such as variability of the yield curve’s level or steepness.

Suggested Citation

  • Tomasz Piotr Kostyra, 2024. "Forecasting the yield curve for Poland with the PCA and machine learning," Bank i Kredyt, Narodowy Bank Polski, vol. 55(4), pages 459-478.
  • Handle: RePEc:nbp:nbpbik:v:56:y:2024:i:4:p:459-478
    as

    Download full text from publisher

    File URL: https://bankikredyt.nbp.pl/content/2024/04/bik_04_2024_03.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    2. Nath, Golaka, 2012. "Estimating term structure changes using principal component analysis in Indian sovereign bond market," MPRA Paper 39229, University Library of Munich, Germany.
    3. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    4. Andreea Oprea, 2022. "The Use of Principal Component Analysis (PCA) in Building Yield Curve Scenarios and Identifying Relative-Value Trading Opportunities on the Romanian Government Bond Market," JRFM, MDPI, vol. 15(6), pages 1-37, May.
    5. Rita Pimentel & Morten Risstad & Sjur Westgaard, 2022. "Predicting interest rate distributions using PCA & quantile regression," Digital Finance, Springer, vol. 4(4), pages 291-311, December.
    6. Yoshiyuki Suimon & Hiroki Sakaji & Kiyoshi Izumi & Hiroyasu Matsushima, 2020. "Autoencoder-Based Three-Factor Model for the Yield Curve of Japanese Government Bonds and a Trading Strategy," JRFM, MDPI, vol. 13(4), pages 1-21, April.
    7. Aswani Kumar Mallick & Alok Kumar Mishra, 2019. "Interest rates forecasting and stress testing in India: a PCA-ARIMA approach," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-17, December.
    8. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matsumura, Marco & Moreira, Ajax & Vicente, José, 2011. "Forecasting the yield curve with linear factor models," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 237-243.
    2. Dick Dijk & Siem Jan Koopman & Michel Wel & Jonathan H. Wright, 2014. "Forecasting interest rates with shifting endpoints," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 693-712, August.
    3. Gary S. Anderson & Alena Audzeyeva, 2019. "A Coherent Framework for Predicting Emerging Market Credit Spreads with Support Vector Regression," Finance and Economics Discussion Series 2019-074, Board of Governors of the Federal Reserve System (U.S.).
    4. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
    5. João Frois Caldeira & Rangan Gupta & Muhammad Tahir Suleman & Hudson S. Torrent, 2021. "Forecasting the Term Structure of Interest Rates of the BRICS: Evidence from a Nonparametric Functional Data Analysis," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 57(15), pages 4312-4329, December.
    6. Massimo Guidolin & Manuela Pedio, 2019. "Forecasting and Trading Monetary Policy Effects on the Riskless Yield Curve with Regime Switching Nelson†Siegel Models," Working Papers 639, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    7. Ang, Andrew & Piazzesi, Monika & Wei, Min, 2006. "What does the yield curve tell us about GDP growth?," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 359-403.
    8. P. Byrne, Joseph & Cao, Shuo & Korobilis, Dimitris, 2015. "Term Structure Dynamics, Macro-Finance Factors and Model Uncertainty," SIRE Discussion Papers 2015-71, Scottish Institute for Research in Economics (SIRE).
    9. Christensen, Jens H.E. & Diebold, Francis X. & Rudebusch, Glenn D., 2011. "The affine arbitrage-free class of Nelson-Siegel term structure models," Journal of Econometrics, Elsevier, vol. 164(1), pages 4-20, September.
    10. Hännikäinen, Jari, 2017. "When does the yield curve contain predictive power? Evidence from a data-rich environment," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1044-1064.
    11. Griese, Knut & Kempf, Alexander, 2005. "Liquiditätsdynamik am deutschen Aktienmarkt," CFR Working Papers 05-12, University of Cologne, Centre for Financial Research (CFR).
    12. S. Borağan Aruoba, 2020. "Term Structures of Inflation Expectations and Real Interest Rates," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(3), pages 542-553, July.
    13. Almeida, Caio & Gomes, Romeu & Leite, André & Vicente, José, 2008. "Movimentos da Estrutura a Termo e Critérios de Minimização do Erro de Previsão em um Modelo Paramétrico Exponencial," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 62(4), December.
    14. repec:hum:wpaper:sfb649dp2008-017 is not listed on IDEAS
    15. Baruník, Jozef & Malinská, Barbora, 2016. "Forecasting the term structure of crude oil futures prices with neural networks," Applied Energy, Elsevier, vol. 164(C), pages 366-379.
    16. Feng, Pan & Qian, Junhui, 2018. "Forecasting the yield curve using a dynamic natural cubic spline model," Economics Letters, Elsevier, vol. 168(C), pages 73-76.
    17. Erhard RESCHENHOFER & Thomas STARK, 2019. "Forecasting the Yield Curve with Dynamic Factors," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 101-113, March.
    18. Audzeyeva, Alena & Fuertes, Ana-Maria, 2018. "On the predictability of emerging market sovereign credit spreads," Journal of International Money and Finance, Elsevier, vol. 88(C), pages 140-157.
    19. Caio Almeida & Kym Ardison & Daniela Kubudi & Axel Simonsen & José Vicente, 2018. "Forecasting Bond Yields with Segmented Term Structure Models," Journal of Financial Econometrics, Oxford University Press, vol. 16(1), pages 1-33.
    20. Sergio Consoli & Luca Tiozzo Pezzoli & Elisa Tosetti, 2022. "Neural forecasting of the Italian sovereign bond market with economic news," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 197-224, December.
    21. Guidolin, Massimo & Thornton, Daniel L., 2018. "Predictions of short-term rates and the expectations hypothesis," International Journal of Forecasting, Elsevier, vol. 34(4), pages 636-664.

    More about this item

    Keywords

    forecasting; LSTM; machine learning; PCA; yield curve;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbp:nbpbik:v:56:y:2024:i:4:p:459-478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wojciech Burjanek (email available below). General contact details of provider: https://edirc.repec.org/data/nbpgvpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.