IDEAS home Printed from https://ideas.repec.org/a/nax/conyad/v62y2017i3p924-940.html
   My bibliography  Save this article

Transmisión de precios futuros de maíz del Chicago Board of Trade al mercado spot mexicano

Author

Listed:
  • Francisco Ortiz Arango

    (Universidad Panamericana, México)

  • Alma Nelly Montiel Guzmán

    (Instituto Politécnico Nacional, México)

Abstract

En México, el uso del programa de coberturas de la Agencia de Servicios a la Comercialización y Desarrollo de Mercados Agropecuarios (ASERCA) es un instrumento que ha sido utilizado por los productores de maíz (principalmente blanco) para la adquisición de productos derivados en el Chicago Board of Trade (CBOT), cuyo subyacente es el maíz amarillo calidad US#2. En un entorno de alta volatilidad en los precios del maíz, los precios del CBOT deberían ajustarse con los precios spot domésticos para incentivar a los productores mexicanos a participar en el programa, sin embargo, mediante un análisis de volatilidad estocástica multivariante durante el periodo de 2007 a 2012, se mostró que el precio de mercado de futuros de maíz no se encuentra fuertemente relacionado con los precios registrados en algunos estados del país, por lo que se puede inferir que la cobertura mediante el programa ASERCA no cumple adecuadamente con su propósito de proteger a los agricultores nacionales que siembran maíz blanco, a pesar de que su uso se ha incrementado.

Suggested Citation

  • Francisco Ortiz Arango & Alma Nelly Montiel Guzmán, 2017. "Transmisión de precios futuros de maíz del Chicago Board of Trade al mercado spot mexicano," Contaduría y Administración, Accounting and Management, vol. 62(3), pages 924-940, Julio-Sep.
  • Handle: RePEc:nax:conyad:v:62:y:2017:i:3:p:924-940
    as

    Download full text from publisher

    File URL: http://www.cya.unam.mx/index.php/cya/article/view/973
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karolyi, G Andrew & Stulz, Rene M, 1996. "Why Do Markets Move Together? An Investigation of U.S.-Japan Stock Return Comovements," Journal of Finance, American Finance Association, vol. 51(3), pages 951-986, July.
    2. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    3. Philipov, Alexander & Glickman, Mark E., 2006. "Multivariate Stochastic Volatility via Wishart Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 313-328, July.
    4. Alexander Philipov & Mark Glickman, 2006. "Factor Multivariate Stochastic Volatility via Wishart Processes," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 311-334.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco Ortiz Arango & Alma Nelly Montiel Guzmán, 2017. "Transmission of future prices of corn of the Chicago Board of Trade to the Mexican spot market," Contaduría y Administración, Accounting and Management, vol. 62(3), pages 941-957, Julio-Sep.
    2. Asai, Manabu & McAleer, Michael, 2015. "Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance," Journal of Econometrics, Elsevier, vol. 189(2), pages 251-262.
    3. Tsionas, Mike G. & Philippas, Dionisis & Philippas, Nikolaos, 2022. "Multivariate stochastic volatility for herding detection: Evidence from the energy sector," Energy Economics, Elsevier, vol. 109(C).
    4. Ishihara, Tsunehiro & Omori, Yasuhiro & Asai, Manabu, 2016. "Matrix exponential stochastic volatility with cross leverage," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 331-350.
    5. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    6. Lopes, Hedibert F. & McCulloch, Robert E. & Tsay, Ruey S., 2022. "Parsimony inducing priors for large scale state–space models," Journal of Econometrics, Elsevier, vol. 230(1), pages 39-61.
    7. Asai, Manabu & McAleer, Michael, 2009. "The structure of dynamic correlations in multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 150(2), pages 182-192, June.
    8. Dellaportas, Petros & Titsias, Michalis K. & Petrova, Katerina & Plataniotis, Anastasios, 2023. "Scalable inference for a full multivariate stochastic volatility model," Journal of Econometrics, Elsevier, vol. 232(2), pages 501-520.
    9. Trojan, Sebastian, 2014. "Multivariate Stochastic Volatility with Dynamic Cross Leverage," Economics Working Paper Series 1424, University of St. Gallen, School of Economics and Political Science.
    10. Moura, Guilherme V. & Santos, André A. P., 2019. "Comparing Forecasts of Extremely Large Conditional Covariance Matrices," DES - Working Papers. Statistics and Econometrics. WS 29291, Universidad Carlos III de Madrid. Departamento de Estadística.
    11. Kastner, Gregor, 2019. "Sparse Bayesian time-varying covariance estimation in many dimensions," Journal of Econometrics, Elsevier, vol. 210(1), pages 98-115.
    12. Julien Chevallier & Florian Ielpo, 2013. "Volatility spillovers in commodity markets," Applied Economics Letters, Taylor & Francis Journals, vol. 20(13), pages 1211-1227, September.
    13. Jin, Xin & Maheu, John M., 2016. "Bayesian semiparametric modeling of realized covariance matrices," Journal of Econometrics, Elsevier, vol. 192(1), pages 19-39.
    14. Mike K. P. So & C. Y. Choi, 2009. "A threshold factor multivariate stochastic volatility model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(8), pages 712-735.
    15. L. Bauwens & E. Otranto, 2013. "Modeling the Dependence of Conditional Correlations on Volatility," Working Paper CRENoS 201304, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    16. David McMillan & Isabel Ruiz & Alan Speight, 2010. "Correlations and spillovers among three euro rates: evidence using realised variance," The European Journal of Finance, Taylor & Francis Journals, vol. 16(8), pages 753-767.
    17. Monia Ben Latifa & Walid Khoufi, 2018. "Contagion between Islamic and Conventional Banks in Malaysia: Empirical Investigation using a DCC-GARCH Model العدوى بين البنوك الإسلامية والتقليدية في ماليزيا: تحقيق تجريبي بواسطة نموذج (DCC-GARCH)," Journal of King Abdulaziz University: Islamic Economics, King Abdulaziz University, Islamic Economics Institute., vol. 31(1), pages 167-178, January.
    18. Joshua Chan, 2023. "BVARs and Stochastic Volatility," Papers 2310.14438, arXiv.org.
    19. Roberto León-González, 2019. "Efficient Bayesian inference in generalized inverse gamma processes for stochastic volatility," Econometric Reviews, Taylor & Francis Journals, vol. 38(8), pages 899-920, September.
    20. Emanuel Kohlscheen & Jouchi Nakajima, 2021. "Steady‐state growth," International Finance, Wiley Blackwell, vol. 24(1), pages 40-52, April.

    More about this item

    Keywords

    Precios de maíz; Chicago Board of Trade; Volatilidad estocástica multivariante;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • D52 - Microeconomics - - General Equilibrium and Disequilibrium - - - Incomplete Markets
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • Q14 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agricultural Finance

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nax:conyad:v:62:y:2017:i:3:p:924-940. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alberto García-Narvaez (Technical Editor) (email available below). General contact details of provider: https://edirc.repec.org/data/fcunamx.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.