IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v625y2024i7995d10.1038_s41586-023-06747-5.html
   My bibliography  Save this article

Solving olympiad geometry without human demonstrations

Author

Listed:
  • Trieu H. Trinh

    (Google Deepmind
    New York University)

  • Yuhuai Wu

    (Google Deepmind)

  • Quoc V. Le

    (Google Deepmind)

  • He He

    (New York University)

  • Thang Luong

    (Google Deepmind)

Abstract

Proving mathematical theorems at the olympiad level represents a notable milestone in human-level automated reasoning1–4, owing to their reputed difficulty among the world’s best talents in pre-university mathematics. Current machine-learning approaches, however, are not applicable to most mathematical domains owing to the high cost of translating human proofs into machine-verifiable format. The problem is even worse for geometry because of its unique translation challenges1,5, resulting in severe scarcity of training data. We propose AlphaGeometry, a theorem prover for Euclidean plane geometry that sidesteps the need for human demonstrations by synthesizing millions of theorems and proofs across different levels of complexity. AlphaGeometry is a neuro-symbolic system that uses a neural language model, trained from scratch on our large-scale synthetic data, to guide a symbolic deduction engine through infinite branching points in challenging problems. On a test set of 30 latest olympiad-level problems, AlphaGeometry solves 25, outperforming the previous best method that only solves ten problems and approaching the performance of an average International Mathematical Olympiad (IMO) gold medallist. Notably, AlphaGeometry produces human-readable proofs, solves all geometry problems in the IMO 2000 and 2015 under human expert evaluation and discovers a generalized version of a translated IMO theorem in 2004.

Suggested Citation

  • Trieu H. Trinh & Yuhuai Wu & Quoc V. Le & He He & Thang Luong, 2024. "Solving olympiad geometry without human demonstrations," Nature, Nature, vol. 625(7995), pages 476-482, January.
  • Handle: RePEc:nat:nature:v:625:y:2024:i:7995:d:10.1038_s41586-023-06747-5
    DOI: 10.1038/s41586-023-06747-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-023-06747-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-023-06747-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jesús Fernández-Villaverde & Galo Nuño & Jesse Perla, 2024. "Taming the curse of dimensionality: quantitative economics with deep learning," Working Papers 2444, Banco de España.
    2. Simon D Angus, 2024. "Tracking Policy-relevant Narratives of Democratic Resilience at Scale: from experts and machines, to AI & the transformer revolution," SoDa Laboratories Working Paper Series 2024-07, Monash University, SoDa Laboratories.
    3. Boštjan Gec & Sašo Džeroski & Ljupčo Todorovski, 2024. "Discovery of Exact Equations for Integer Sequences," Mathematics, MDPI, vol. 12(23), pages 1-22, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:625:y:2024:i:7995:d:10.1038_s41586-023-06747-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.