IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v621y2023i7978d10.1038_s41586-023-06335-7.html
   My bibliography  Save this article

Sustainably sourced components to generate high-strength adhesives

Author

Listed:
  • Clayton R. Westerman

    (Purdue University)

  • Bradley C. McGill

    (Purdue University)

  • Jonathan J. Wilker

    (Purdue University
    School of Materials Engineering, Purdue University, Neil Armstrong Hall of Engineering)

Abstract

Nearly all adhesives1,2 are derived from petroleum, create permanent bonds3, frustrate materials separation for recycling4,5 and prevent degradation in landfills. When trying to shift from petroleum feedstocks to a sustainable materials ecosystem, available options suffer from low performance, high cost or lack of availability at the required scales. Here we present a sustainably sourced adhesive system, made from epoxidized soy oil, malic acid and tannic acid, with performance comparable to that of current industrial products. Joints can be cured under conditions ranging from use of a hair dryer for 5 min to an oven at 180 °C for 24 h. Adhesion between metal substrates up to around 18 MPa is achieved, and, in the best cases, performance exceeds that of a classic epoxy, the strongest modern adhesive. All components are biomass derived, low cost and already available in large quantities. Manufacturing at scale can be a simple matter of mixing and heating, suggesting that this new adhesive may contribute towards the sustainable bonding of materials.

Suggested Citation

  • Clayton R. Westerman & Bradley C. McGill & Jonathan J. Wilker, 2023. "Sustainably sourced components to generate high-strength adhesives," Nature, Nature, vol. 621(7978), pages 306-311, September.
  • Handle: RePEc:nat:nature:v:621:y:2023:i:7978:d:10.1038_s41586-023-06335-7
    DOI: 10.1038/s41586-023-06335-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-023-06335-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-023-06335-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoming Xie & Yulian Jiang & Xiaoman Yao & Jiaqi Zhang & Zilin Zhang & Taoping Huang & Runhan Li & Yifa Chen & Shun-Li Li & Ya-Qian Lan, 2024. "A solvent-free processed low-temperature tolerant adhesive," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Quanqian Lyu & Miaomiao Li & Lianbin Zhang & Jintao Zhu, 2024. "Structurally-colored adhesives for sensitive, high-resolution, and non-invasive adhesion self-monitoring," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:621:y:2023:i:7978:d:10.1038_s41586-023-06335-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.