IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v619y2023i7970d10.1038_s41586-023-06141-1.html
   My bibliography  Save this article

Photocatalytic phosphine-mediated water activation for radical hydrogenation

Author

Listed:
  • Jingjing Zhang

    (Organisch-Chemisches Institut, Westfälische Wilhelms-Universität)

  • Christian Mück-Lichtenfeld

    (Organisch-Chemisches Institut, Westfälische Wilhelms-Universität
    Westfälische Wilhelms-Universität)

  • Armido Studer

    (Organisch-Chemisches Institut, Westfälische Wilhelms-Universität)

Abstract

The chemical activation of water would allow this earth-abundant resource to be transferred into value-added compounds, and is a topic of keen interest in energy research1,2. Here, we demonstrate water activation with a photocatalytic phosphine-mediated radical process under mild conditions. This reaction generates a metal-free PR3–H2O radical cation intermediate, in which both hydrogen atoms are used in the subsequent chemical transformation through sequential heterolytic (H+) and homolytic (H•) cleavage of the two O–H bonds. The PR3–OH radical intermediate provides an ideal platform that mimics the reactivity of a ‘free’ hydrogen atom, and which can be directly transferred to closed-shell π systems, such as activated alkenes, unactivated alkenes, naphthalenes and quinoline derivatives. The resulting H adduct C radicals are eventually reduced by a thiol co-catalyst, leading to overall transfer hydrogenation of the π system, with the two H atoms of water ending up in the product. The thermodynamic driving force is the strong P=O bond formed in the phosphine oxide by-product. Experimental mechanistic studies and density functional theory calculations support the hydrogen atom transfer of the PR3–OH intermediate as a key step in the radical hydrogenation process.

Suggested Citation

  • Jingjing Zhang & Christian Mück-Lichtenfeld & Armido Studer, 2023. "Photocatalytic phosphine-mediated water activation for radical hydrogenation," Nature, Nature, vol. 619(7970), pages 506-513, July.
  • Handle: RePEc:nat:nature:v:619:y:2023:i:7970:d:10.1038_s41586-023-06141-1
    DOI: 10.1038/s41586-023-06141-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-023-06141-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-023-06141-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soumen Sinhababu & Roushan Prakash Singh & Maxim R. Radzhabov & Jugal Kumawat & Daniel H. Ess & Neal P. Mankad, 2024. "Coordination-induced O-H/N-H bond weakening by a redox non-innocent, aluminum-containing radical," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Yanwei Wang & Qian Wang & Lei Wu & Kangping Jia & Minyan Wang & Youai Qiu, 2024. "Electroreduction of unactivated alkenes using water as hydrogen source," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:619:y:2023:i:7970:d:10.1038_s41586-023-06141-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.