IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47168-w.html
   My bibliography  Save this article

Electroreduction of unactivated alkenes using water as hydrogen source

Author

Listed:
  • Yanwei Wang

    (Nankai University)

  • Qian Wang

    (Nankai University)

  • Lei Wu

    (Nanjing University)

  • Kangping Jia

    (Nankai University)

  • Minyan Wang

    (Nanjing University)

  • Youai Qiu

    (Nankai University)

Abstract

Herein, we report an electroreduction of unactivated alkyl alkenes enabled by [Fe]-H, which is provided through the combination of anodic iron salts and the silane generated in situ via cathodic reduction, using H2O as an H-source. The catalytic amounts of Si-additive work as an H-carrier from H2O to generate a highly active silane species in situ under continuous electrochemical conditions. This approach shows a broad substrate scope and good functional group compatibility. In addition to hydrogenation, the use of D2O instead of H2O provides the desired deuterated products in good yields with excellent D-incorporation (up to >99%). Further late-stage hydrogenation of complex molecules and drug derivatives demonstrate potential application in the pharmaceutical industry. Mechanistic studies are performed and provide support for the proposed mechanistic pathway.

Suggested Citation

  • Yanwei Wang & Qian Wang & Lei Wu & Kangping Jia & Minyan Wang & Youai Qiu, 2024. "Electroreduction of unactivated alkenes using water as hydrogen source," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47168-w
    DOI: 10.1038/s41467-024-47168-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47168-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47168-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pengfei Li & Chengcheng Guo & Siyi Wang & Dengke Ma & Tian Feng & Yanwei Wang & Youai Qiu, 2022. "Facile and general electrochemical deuteration of unactivated alkyl halides," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Jingjing Zhang & Christian Mück-Lichtenfeld & Armido Studer, 2023. "Photocatalytic phosphine-mediated water activation for radical hydrogenation," Nature, Nature, vol. 619(7970), pages 506-513, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiwei Zhao & Ranran Zhang & Yaowen Liu & Zile Zhu & Qiuyan Wang & Youai Qiu, 2024. "Electrochemical C−H deuteration of pyridine derivatives with D2O," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengjie Jiao & Jie Zhang & Minyan Wang & Hongjian Lu & Zhuangzhi Shi, 2024. "Metallaphotoredox deuteroalkylation utilizing thianthrenium salts," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Soumen Sinhababu & Roushan Prakash Singh & Maxim R. Radzhabov & Jugal Kumawat & Daniel H. Ess & Neal P. Mankad, 2024. "Coordination-induced O-H/N-H bond weakening by a redox non-innocent, aluminum-containing radical," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. Zhiwei Zhao & Ranran Zhang & Yaowen Liu & Zile Zhu & Qiuyan Wang & Youai Qiu, 2024. "Electrochemical C−H deuteration of pyridine derivatives with D2O," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Min Liu & Tian Feng & Yanwei Wang & Guangsheng Kou & Qiuyan Wang & Qian Wang & Youai Qiu, 2023. "Metal-free electrochemical dihydroxylation of unactivated alkenes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Meng He & Rui Li & Chuanqi Cheng & Cuibo Liu & Bin Zhang, 2024. "Microenvironment regulation breaks the Faradaic efficiency-current density trade-off for electrocatalytic deuteration using D2O," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47168-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.