IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v615y2023i7951d10.1038_s41586-023-05780-8.html
   My bibliography  Save this article

H3K4me3 regulates RNA polymerase II promoter-proximal pause-release

Author

Listed:
  • Hua Wang

    (Memorial Sloan Kettering Cancer Center
    Memorial Sloan Kettering Cancer Center)

  • Zheng Fan

    (The Institute of Cancer Research
    University of Copenhagen
    University of Copenhagen)

  • Pavel V. Shliaha

    (Memorial Sloan Kettering Cancer Center)

  • Matthew Miele

    (Memorial Sloan Kettering Cancer Center)

  • Ronald C. Hendrickson

    (Memorial Sloan Kettering Cancer Center)

  • Xuejun Jiang

    (Memorial Sloan Kettering Cancer Center)

  • Kristian Helin

    (Memorial Sloan Kettering Cancer Center
    Memorial Sloan Kettering Cancer Center
    The Institute of Cancer Research
    University of Copenhagen)

Abstract

Trimethylation of histone H3 lysine 4 (H3K4me3) is associated with transcriptional start sites and has been proposed to regulate transcription initiation1,2. However, redundant functions of the H3K4 SET1/COMPASS methyltransferase complexes complicate the elucidation of the specific role of H3K4me3 in transcriptional regulation3,4. Here, using mouse embryonic stem cells as a model system, we show that acute ablation of shared subunits of the SET1/COMPASS complexes leads to a complete loss of all H3K4 methylation. Turnover of H3K4me3 occurs more rapidly than that of H3K4me1 and H3K4me2 and is dependent on KDM5 demethylases. Notably, acute loss of H3K4me3 does not have detectable effects on transcriptional initiation but leads to a widespread decrease in transcriptional output, an increase in RNA polymerase II (RNAPII) pausing and slower elongation. We show that H3K4me3 is required for the recruitment of the integrator complex subunit 11 (INTS11), which is essential for the eviction of paused RNAPII and transcriptional elongation. Thus, our study demonstrates a distinct role for H3K4me3 in transcriptional pause-release and elongation rather than transcriptional initiation.

Suggested Citation

  • Hua Wang & Zheng Fan & Pavel V. Shliaha & Matthew Miele & Ronald C. Hendrickson & Xuejun Jiang & Kristian Helin, 2023. "H3K4me3 regulates RNA polymerase II promoter-proximal pause-release," Nature, Nature, vol. 615(7951), pages 339-348, March.
  • Handle: RePEc:nat:nature:v:615:y:2023:i:7951:d:10.1038_s41586-023-05780-8
    DOI: 10.1038/s41586-023-05780-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-023-05780-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-023-05780-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rebecca J. Harris & Maninder Heer & Mark D. Levasseur & Tyrell N. Cartwright & Bethany Weston & Jennifer L. Mitchell & Jonathan M. Coxhead & Luke Gaughan & Lisa Prendergast & Daniel Rico & Jonathan M., 2023. "Release of Histone H3K4-reading transcription factors from chromosomes in mitosis is independent of adjacent H3 phosphorylation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Di Gao & Chao Li & Shao-Yuan Liu & Teng-Teng Xu & Xiao-Ting Lin & Yong-Peng Tan & Fu-Min Gao & Li-Tao Yi & Jian V. Zhang & Jun-Yu Ma & Tie-Gang Meng & William S. B. Yeung & Kui Liu & Xiang-Hong Ou & R, 2024. "P300 regulates histone crotonylation and preimplantation embryo development," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Umut Berkay Altıntaş & Ji-Heui Seo & Claudia Giambartolomei & Dogancan Ozturan & Brad J. Fortunato & Geoffrey M. Nelson & Seth R. Goldman & Karen Adelman & Faraz Hach & Matthew L. Freedman & Nathan A., 2024. "Decoding the epigenetics and chromatin loop dynamics of androgen receptor-mediated transcription," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:615:y:2023:i:7951:d:10.1038_s41586-023-05780-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.