IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v615y2023i7951d10.1038_s41586-022-05690-1.html
   My bibliography  Save this article

Tropical deforestation causes large reductions in observed precipitation

Author

Listed:
  • C. Smith

    (University of Leeds)

  • J. C. A. Baker

    (University of Leeds)

  • D. V. Spracklen

    (University of Leeds)

Abstract

Tropical forests play a critical role in the hydrological cycle and can influence local and regional precipitation1. Previous work has assessed the impacts of tropical deforestation on precipitation, but these efforts have been largely limited to case studies2. A wider analysis of interactions between deforestation and precipitation—and especially how any such interactions might vary across spatial scales—is lacking. Here we show reduced precipitation over deforested regions across the tropics. Our results arise from a pan-tropical assessment of the impacts of 2003–2017 forest loss on precipitation using satellite, station-based and reanalysis datasets. The effect of deforestation on precipitation increased at larger scales, with satellite datasets showing that forest loss caused robust reductions in precipitation at scales greater than 50 km. The greatest declines in precipitation occurred at 200 km, the largest scale we explored, for which 1 percentage point of forest loss reduced precipitation by 0.25 ± 0.1 mm per month. Reanalysis and station-based products disagree on the direction of precipitation responses to forest loss, which we attribute to sparse in situ tropical measurements. We estimate that future deforestation in the Congo will reduce local precipitation by 8–10% in 2100. Our findings provide a compelling argument for tropical forest conservation to support regional climate resilience.

Suggested Citation

  • C. Smith & J. C. A. Baker & D. V. Spracklen, 2023. "Tropical deforestation causes large reductions in observed precipitation," Nature, Nature, vol. 615(7951), pages 270-275, March.
  • Handle: RePEc:nat:nature:v:615:y:2023:i:7951:d:10.1038_s41586-022-05690-1
    DOI: 10.1038/s41586-022-05690-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-05690-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-05690-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefano Pinardi & Matteo Salis & Gabriele Sartor & Rosa Meo, 2023. "EU−Africa: Digital and Social Questions in a Multicultural Agroecological Transition for the Cocoa Production in Africa," Social Sciences, MDPI, vol. 12(7), pages 1-29, July.
    2. Araujo, Rafael, 2024. "The value of tropical forests to hydropower," Energy Economics, Elsevier, vol. 129(C).
    3. Chaves, Michel E.D. & Sanches, Ieda D. & Adami, Marcos, 2023. "Brazil needs juridical security to recover agri-environmental epistemic sovereignty," Land Use Policy, Elsevier, vol. 132(C).
    4. Simon P. K. Bowring & Wei Li & Florent Mouillot & Thais M. Rosan & Philippe Ciais, 2024. "Road fragment edges enhance wildfire incidence and intensity, while suppressing global burned area," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Temesgen Alemayehu Abera & Janne Heiskanen & Eduardo Eiji Maeda & Mohammed Ahmed Muhammed & Netra Bhandari & Ville Vakkari & Binyam Tesfaw Hailu & Petri K. E. Pellikka & Andreas Hemp & Pieter G. Zyl &, 2024. "Deforestation amplifies climate change effects on warming and cloud level rise in African montane forests," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:615:y:2023:i:7951:d:10.1038_s41586-022-05690-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.