IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v608y2022i7923d10.1038_s41586-022-05053-w.html
   My bibliography  Save this article

Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5

Author

Listed:
  • Qian Wang

    (Columbia University Vagelos College of Physicians and Surgeons)

  • Yicheng Guo

    (Columbia University Vagelos College of Physicians and Surgeons)

  • Sho Iketani

    (Columbia University Vagelos College of Physicians and Surgeons
    Columbia University Vagelos College of Physicians and Surgeons)

  • Manoj S. Nair

    (Columbia University Vagelos College of Physicians and Surgeons)

  • Zhiteng Li

    (Columbia University Vagelos College of Physicians and Surgeons)

  • Hiroshi Mohri

    (Columbia University Vagelos College of Physicians and Surgeons)

  • Maple Wang

    (Columbia University Vagelos College of Physicians and Surgeons)

  • Jian Yu

    (Columbia University Vagelos College of Physicians and Surgeons)

  • Anthony D. Bowen

    (Columbia University Vagelos College of Physicians and Surgeons
    Columbia University Vagelos College of Physicians and Surgeons)

  • Jennifer Y. Chang

    (Columbia University Vagelos College of Physicians and Surgeons)

  • Jayesh G. Shah

    (Columbia University Vagelos College of Physicians and Surgeons)

  • Nadia Nguyen

    (Columbia University Vagelos College of Physicians and Surgeons)

  • Zhiwei Chen

    (The University of Hong Kong)

  • Kathrine Meyers

    (Columbia University Vagelos College of Physicians and Surgeons
    Columbia University Vagelos College of Physicians and Surgeons)

  • Michael T. Yin

    (Columbia University Vagelos College of Physicians and Surgeons
    Columbia University Vagelos College of Physicians and Surgeons)

  • Magdalena E. Sobieszczyk

    (Columbia University Vagelos College of Physicians and Surgeons
    Columbia University Vagelos College of Physicians and Surgeons)

  • Zizhang Sheng

    (Columbia University Vagelos College of Physicians and Surgeons)

  • Yaoxing Huang

    (Columbia University Vagelos College of Physicians and Surgeons)

  • Lihong Liu

    (Columbia University Vagelos College of Physicians and Surgeons)

  • David D. Ho

    (Columbia University Vagelos College of Physicians and Surgeons
    Columbia University Vagelos College of Physicians and Surgeons
    Columbia University Vagelos College of Physicians and Surgeons)

Abstract

SARS-CoV-2 Omicron subvariants BA.2.12.1 and BA.4/5 have surged notably to become dominant in the United States and South Africa, respectively1,2. These new subvariants carrying further mutations in their spike proteins raise concerns that they may further evade neutralizing antibodies, thereby further compromising the efficacy of COVID-19 vaccines and therapeutic monoclonals. We now report findings from a systematic antigenic analysis of these surging Omicron subvariants. BA.2.12.1 is only modestly (1.8-fold) more resistant to sera from vaccinated and boosted individuals than BA.2. However, BA.4/5 is substantially (4.2-fold) more resistant and thus more likely to lead to vaccine breakthrough infections. Mutation at spike residue L452 found in both BA.2.12.1 and BA.4/5 facilitates escape from some antibodies directed to the so-called class 2 and 3 regions of the receptor-binding domain3. The F486V mutation found in BA.4/5 facilitates escape from certain class 1 and 2 antibodies but compromises the spike affinity for the viral receptor. The R493Q reversion mutation, however, restores receptor affinity and consequently the fitness of BA.4/5. Among therapeutic antibodies authorized for clinical use, only bebtelovimab retains full potency against both BA.2.12.1 and BA.4/5. The Omicron lineage of SARS-CoV-2 continues to evolve, successively yielding subvariants that are not only more transmissible but also more evasive to antibodies.

Suggested Citation

  • Qian Wang & Yicheng Guo & Sho Iketani & Manoj S. Nair & Zhiteng Li & Hiroshi Mohri & Maple Wang & Jian Yu & Anthony D. Bowen & Jennifer Y. Chang & Jayesh G. Shah & Nadia Nguyen & Zhiwei Chen & Kathrin, 2022. "Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5," Nature, Nature, vol. 608(7923), pages 603-608, August.
  • Handle: RePEc:nat:nature:v:608:y:2022:i:7923:d:10.1038_s41586-022-05053-w
    DOI: 10.1038/s41586-022-05053-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-05053-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-05053-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weizhong Li & Tao Wang & Arunraj M. Rajendrakumar & Gyanada Acharya & Zizhen Miao & Berin P. Varghese & Hailiang Yu & Bibek Dhakal & Tanya LeRoith & Athira Karunakaran & Wenbin Tuo & Xiaoping Zhu, 2023. "An FcRn-targeted mucosal vaccine against SARS-CoV-2 infection and transmission," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Guoli Shi & Tiansheng Li & Kin Kui Lai & Reed F. Johnson & Jonathan W. Yewdell & Alex A. Compton, 2024. "Omicron Spike confers enhanced infectivity and interferon resistance to SARS-CoV-2 in human nasal tissue," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Saya Moriyama & Yuki Anraku & Shunta Taminishi & Yu Adachi & Daisuke Kuroda & Shunsuke Kita & Yusuke Higuchi & Yuhei Kirita & Ryutaro Kotaki & Keisuke Tonouchi & Kohei Yumoto & Tateki Suzuki & Taiyou , 2023. "Structural delineation and computational design of SARS-CoV-2-neutralizing antibodies against Omicron subvariants," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Farina Karim & Catherine Riou & Mallory Bernstein & Zesuliwe Jule & Gila Lustig & Strauss Graan & Roanne S. Keeton & Janine-Lee Upton & Yashica Ganga & Khadija Khan & Kajal Reedoy & Matilda Mazibuko &, 2024. "Clearance of persistent SARS-CoV-2 associates with increased neutralizing antibodies in advanced HIV disease post-ART initiation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Hung Fu Tseng & Bradley K. Ackerson & Katia J. Bruxvoort & Lina S. Sy & Julia E. Tubert & Gina S. Lee & Jennifer H. Ku & Ana Florea & Yi Luo & Sijia Qiu & Soon Kyu Choi & Harpreet S. Takhar & Michael , 2023. "Effectiveness of mRNA-1273 vaccination against SARS-CoV-2 omicron subvariants BA.1, BA.2, BA.2.12.1, BA.4, and BA.5," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Mark Chernyshev & Mrunal Sakharkar & Ruth I. Connor & Haley L. Dugan & Daniel J. Sheward & C. G. Rappazzo & Aron Stålmarck & Mattias N. E. Forsell & Peter F. Wright & Martin Corcoran & Ben Murrell & L, 2023. "Vaccination of SARS-CoV-2-infected individuals expands a broad range of clonally diverse affinity-matured B cell lineages," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Katherine U. Gaynor & Marina Vaysburd & Maximilian A. J. Harman & Anna Albecka & Phillip Jeffrey & Paul Beswick & Guido Papa & Liuhong Chen & Donna Mallery & Brian McGuinness & Katerine Rietschoten & , 2023. "Multivalent bicyclic peptides are an effective antiviral modality that can potently inhibit SARS-CoV-2," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Lorena M. Coria & Juan Manuel Rodriguez & Agostina Demaria & Laura A. Bruno & Mayra Rios Medrano & Celeste Pueblas Castro & Eliana F. Castro & Sabrina A. Del Priore & Andres C. Hernando Insua & Ingrid, 2024. "A Gamma-adapted subunit vaccine induces broadly neutralizing antibodies against SARS-CoV-2 variants and protects mice from infection," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:608:y:2022:i:7923:d:10.1038_s41586-022-05053-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.