IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v607y2022i7918d10.1038_s41586-022-04867-y.html
   My bibliography  Save this article

Life rather than climate influences diversity at scales greater than 40 million years

Author

Listed:
  • Andrej Spiridonov

    (Vilnius University)

  • Shaun Lovejoy

    (McGill University)

Abstract

The diversity of life on Earth is controlled by hierarchical processes that interact over wide ranges of timescales1. Here, we consider the megaclimate regime2 at scales ≥1 million years (Myr). We focus on determining the domains of ‘wandering’ stochastic Earth system processes (‘Court Jester’3) and stabilizing biotic interactions that induce diversity dependence of fluctuations in macroevolutionary rates (‘Red Queen’4). Using state-of-the-art multiscale Haar and cross-Haar fluctuation analyses, we analysed the global genus-level Phanerozoic marine animal Paleobiology Database record of extinction rates (E), origination rates (O) and diversity (D) as well as sea water palaeotemperatures (T). Over the entire observed range from several million years to several hundred million years, we found that the fluctuations of T, E and O showed time-scaling behaviour. The megaclimate was characterized by positive scaling exponents—it is therefore apparently unstable. E and O are also scaling but with negative exponents—stable behaviour that is biotically mediated. For D, there were two regimes with a crossover at critical timescale $$\Delta {t}_{{\rm{trans}}}$$ Δ t trans ≈ 40 Myr. For shorter timescales, D exhibited nearly the same positive scaling as the megaclimate palaeotemperatures, whereas for longer timescales it tracks the scaling of macroevolutionary rates. At scales of at least $$\Delta {t}_{{\rm{trans}}}$$ Δ t trans there is onset of diversity dependence of E and O, probably enabled by mixing and synchronization (globalization) of the biota by geodispersal (‘Geo-Red Queen’).

Suggested Citation

  • Andrej Spiridonov & Shaun Lovejoy, 2022. "Life rather than climate influences diversity at scales greater than 40 million years," Nature, Nature, vol. 607(7918), pages 307-312, July.
  • Handle: RePEc:nat:nature:v:607:y:2022:i:7918:d:10.1038_s41586-022-04867-y
    DOI: 10.1038/s41586-022-04867-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-04867-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-04867-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhen Guo & Joseph T. Flannery-Sutherland & Michael J. Benton & Zhong-Qiang Chen, 2023. "Bayesian analyses indicate bivalves did not drive the downfall of brachiopods following the Permian-Triassic mass extinction," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:607:y:2022:i:7918:d:10.1038_s41586-022-04867-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.