Author
Listed:
- Jinqiao Dong
(Shanghai Jiao Tong University
University of Bristol)
- Lingmei Liu
(Chongqing University)
- Chunxia Tan
(Shanghai Jiao Tong University)
- Qisong Xu
(National University of Singapore)
- Jiachen Zhang
(University of Science and Technology of China)
- Zhiwei Qiao
(National University of Singapore)
- Dandan Chu
(Shanghai Jiao Tong University)
- Yan Liu
(Shanghai Jiao Tong University)
- Qun Zhang
(University of Science and Technology of China)
- Jianwen Jiang
(National University of Singapore)
- Yu Han
(Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST))
- Anthony P. Davis
(University of Bristol)
- Yong Cui
(Shanghai Jiao Tong University)
Abstract
Two-dimensional materials with monolayer thickness and extreme aspect ratios are sought for their high surface areas and unusual physicochemical properties1. Liquid exfoliation is a straightforward and scalable means of accessing such materials2, but has been restricted to sheets maintained by strong covalent, coordination or ionic interactions3–10. The exfoliation of molecular crystals, in which repeat units are held together by weak non-covalent bonding, could generate a greatly expanded range of two-dimensional crystalline materials with diverse surfaces and structural features. However, at first sight, these weak forces would seem incapable of supporting such intrinsically fragile morphologies. Against this expectation, we show here that crystals composed of discrete supramolecular coordination complexes can be exfoliated by sonication to give free-standing monolayers approximately 2.3 nanometres thick with aspect ratios up to approximately 2,500:1, sustained purely by apolar intermolecular interactions. These nanosheets are characterized by atomic force microscopy and high-resolution transmission electron microscopy, confirming their crystallinity. The monolayers possess complex chiral surfaces derived partly from individual supramolecular coordination complex components but also from interactions with neighbours. In this respect, they represent a distinct type of material in which molecular components are all equally exposed to their environment, as if in solution, yet with properties arising from cooperation between molecules, because of crystallinity. This unusual nature is reflected in the molecular recognition properties of the materials, which bind carbohydrates with strongly enhanced enantiodiscrimination relative to individual molecules or bulk three-dimensional crystals.
Suggested Citation
Jinqiao Dong & Lingmei Liu & Chunxia Tan & Qisong Xu & Jiachen Zhang & Zhiwei Qiao & Dandan Chu & Yan Liu & Qun Zhang & Jianwen Jiang & Yu Han & Anthony P. Davis & Yong Cui, 2022.
"Free-standing homochiral 2D monolayers by exfoliation of molecular crystals,"
Nature, Nature, vol. 602(7898), pages 606-611, February.
Handle:
RePEc:nat:nature:v:602:y:2022:i:7898:d:10.1038_s41586-022-04407-8
DOI: 10.1038/s41586-022-04407-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- Yingguo Li & Jialun He & Guilong Lu & Chensheng Wang & Mengmeng Fu & Juan Deng & Fu Yang & Danfeng Jiang & Xiao Chen & Ziyi Yu & Yan Liu & Chao Yu & Yong Cui, 2024.
"De novo construction of amine-functionalized metal-organic cages as heterogenous catalysts for microflow catalysis,"
Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Yun Fan & Yu Shen & Jia Zhang & Xinglong Zhang & Zeqi Zhang & Hongfeng Li & Yong Peng & Jiena Weng & Ruijie Xie & Wenlei Zhang & Yu Han & Yawen Xiao & Suoying Zhang & Bing Zheng & Hao-Li Zhang & Sheng, 2024.
"Wedging crystals to fabricate crystalline framework nanosheets via mechanochemistry,"
Nature Communications, Nature, vol. 15(1), pages 1-10, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:602:y:2022:i:7898:d:10.1038_s41586-022-04407-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.