A synthetic antibiotic class overcoming bacterial multidrug resistance
Author
Abstract
Suggested Citation
DOI: 10.1038/s41586-021-04045-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jiekai Sun & Xu Wang & Ye Gao & Shuangyu Li & Ziwei Hu & Yan Huang & Baoqiang Fan & Xia Wang & Miao Liu & Chunhua Qiao & Wei Zhang & Yipeng Wang & Xingyue Ji, 2024. "H2S scavenger as a broad-spectrum strategy to deplete bacteria-derived H2S for antibacterial sensitization," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
- Xueqin Shu & Yingying Shi & Yi Huang & Dan Yu & Baolin Sun, 2023. "Transcription tuned by S-nitrosylation underlies a mechanism for Staphylococcus aureus to circumvent vancomycin killing," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- Chencheng Qin & Yi Yang & Xiaodong Wu & Long Chen & Zhaoli Liu & Lin Tang & Lai Lyu & Danlian Huang & Dongbo Wang & Chang Zhang & Xingzhong Yuan & Wen Liu & Hou Wang, 2023. "Twistedly hydrophobic basis with suitable aromatic metrics in covalent organic networks govern micropollutant decontamination," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Jin Feng & Youle Zheng & Wanqing Ma & Defeng Weng & Dapeng Peng & Yindi Xu & Zhifang Wang & Xu Wang, 2024. "A synthetic antibiotic class with a deeply-optimized design for overcoming bacterial resistance," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Tianyu Wu & Min Zhou & Jingcheng Zou & Qi Chen & Feng Qian & Jürgen Kurths & Runhui Liu & Yang Tang, 2024. "AI-guided few-shot inverse design of HDP-mimicking polymers against drug-resistant bacteria," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
- Chih-Wei Chen & Nadja Leimer & Egor A. Syroegin & Clémence Dunand & Zackery P. Bulman & Kim Lewis & Yury S. Polikanov & Maxim S. Svetlov, 2023. "Structural insights into the mechanism of overcoming Erm-mediated resistance by macrolides acting together with hygromycin-A," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Narayan Prasad Parajuli & Andrew Emmerich & Chandra Sekhar Mandava & Michael Y. Pavlov & Suparna Sanyal, 2023. "Antibiotic thermorubin tethers ribosomal subunits and impedes A-site interactions to perturb protein synthesis in bacteria," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:599:y:2021:i:7885:d:10.1038_s41586-021-04045-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.