IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v599y2021i7885d10.1038_s41586-021-04045-6.html
   My bibliography  Save this article

A synthetic antibiotic class overcoming bacterial multidrug resistance

Author

Listed:
  • Matthew J. Mitcheltree

    (Harvard University)

  • Amarnath Pisipati

    (Harvard University)

  • Egor A. Syroegin

    (University of Illinois at Chicago)

  • Katherine J. Silvestre

    (Harvard University)

  • Dorota Klepacki

    (University of Illinois at Chicago)

  • Jeremy D. Mason

    (Harvard University)

  • Daniel W. Terwilliger

    (Harvard University)

  • Giambattista Testolin

    (Harvard University)

  • Aditya R. Pote

    (Harvard University)

  • Kelvin J. Y. Wu

    (Harvard University)

  • Richard Porter Ladley

    (Harvard University)

  • Kelly Chatman

    (Harvard University)

  • Alexander S. Mankin

    (University of Illinois at Chicago)

  • Yury S. Polikanov

    (University of Illinois at Chicago)

  • Andrew G. Myers

    (Harvard University)

Abstract

The dearth of new medicines effective against antibiotic-resistant bacteria presents a growing global public health concern1. For more than five decades, the search for new antibiotics has relied heavily on the chemical modification of natural products (semisynthesis), a method ill-equipped to combat rapidly evolving resistance threats. Semisynthetic modifications are typically of limited scope within polyfunctional antibiotics, usually increase molecular weight, and seldom permit modifications of the underlying scaffold. When properly designed, fully synthetic routes can easily address these shortcomings2. Here we report the structure-guided design and component-based synthesis of a rigid oxepanoproline scaffold which, when linked to the aminooctose residue of clindamycin, produces an antibiotic of exceptional potency and spectrum of activity, which we name iboxamycin. Iboxamycin is effective against ESKAPE pathogens including strains expressing Erm and Cfr ribosomal RNA methyltransferase enzymes, products of genes that confer resistance to all clinically relevant antibiotics targeting the large ribosomal subunit, namely macrolides, lincosamides, phenicols, oxazolidinones, pleuromutilins and streptogramins. X-ray crystallographic studies of iboxamycin in complex with the native bacterial ribosome, as well as with the Erm-methylated ribosome, uncover the structural basis for this enhanced activity, including a displacement of the $${\text{m}}_{2}^{6}\text{A}2058$$ m 2 6 A 2058 nucleotide upon antibiotic binding. Iboxamycin is orally bioavailable, safe and effective in treating both Gram-positive and Gram-negative bacterial infections in mice, attesting to the capacity for chemical synthesis to provide new antibiotics in an era of increasing resistance.

Suggested Citation

  • Matthew J. Mitcheltree & Amarnath Pisipati & Egor A. Syroegin & Katherine J. Silvestre & Dorota Klepacki & Jeremy D. Mason & Daniel W. Terwilliger & Giambattista Testolin & Aditya R. Pote & Kelvin J. , 2021. "A synthetic antibiotic class overcoming bacterial multidrug resistance," Nature, Nature, vol. 599(7885), pages 507-512, November.
  • Handle: RePEc:nat:nature:v:599:y:2021:i:7885:d:10.1038_s41586-021-04045-6
    DOI: 10.1038/s41586-021-04045-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-04045-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-04045-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tianyu Wu & Min Zhou & Jingcheng Zou & Qi Chen & Feng Qian & Jürgen Kurths & Runhui Liu & Yang Tang, 2024. "AI-guided few-shot inverse design of HDP-mimicking polymers against drug-resistant bacteria," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    2. Xueqin Shu & Yingying Shi & Yi Huang & Dan Yu & Baolin Sun, 2023. "Transcription tuned by S-nitrosylation underlies a mechanism for Staphylococcus aureus to circumvent vancomycin killing," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Chih-Wei Chen & Nadja Leimer & Egor A. Syroegin & Clémence Dunand & Zackery P. Bulman & Kim Lewis & Yury S. Polikanov & Maxim S. Svetlov, 2023. "Structural insights into the mechanism of overcoming Erm-mediated resistance by macrolides acting together with hygromycin-A," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Narayan Prasad Parajuli & Andrew Emmerich & Chandra Sekhar Mandava & Michael Y. Pavlov & Suparna Sanyal, 2023. "Antibiotic thermorubin tethers ribosomal subunits and impedes A-site interactions to perturb protein synthesis in bacteria," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Chencheng Qin & Yi Yang & Xiaodong Wu & Long Chen & Zhaoli Liu & Lin Tang & Lai Lyu & Danlian Huang & Dongbo Wang & Chang Zhang & Xingzhong Yuan & Wen Liu & Hou Wang, 2023. "Twistedly hydrophobic basis with suitable aromatic metrics in covalent organic networks govern micropollutant decontamination," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Jin Feng & Youle Zheng & Wanqing Ma & Defeng Weng & Dapeng Peng & Yindi Xu & Zhifang Wang & Xu Wang, 2024. "A synthetic antibiotic class with a deeply-optimized design for overcoming bacterial resistance," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:599:y:2021:i:7885:d:10.1038_s41586-021-04045-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.