IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v596y2021i7872d10.1038_d41586-021-02222-1.html
   My bibliography  Save this article

Electric cars and batteries: how will the world produce enough?

Author

Listed:
  • Davide Castelvecchi

Abstract

Reducing the use of scarce metals — and recycling them — will be key to the world’s transition to electric vehicles.

Suggested Citation

  • Davide Castelvecchi, 2021. "Electric cars and batteries: how will the world produce enough?," Nature, Nature, vol. 596(7872), pages 336-339, August.
  • Handle: RePEc:nat:nature:v:596:y:2021:i:7872:d:10.1038_d41586-021-02222-1
    DOI: 10.1038/d41586-021-02222-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/d41586-021-02222-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/d41586-021-02222-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schuster, Viktoria & Ciacci, Luca & Passarini, Fabrizio, 2023. "Mining the in-use stock of energy-transition materials for closed-loop e-mobility," Resources Policy, Elsevier, vol. 86(PB).
    2. Marvin Sperling & Tommi Kivelä, 2022. "Concept of a Dual Energy Storage System for Sustainable Energy Supply of Automated Guided Vehicles," Energies, MDPI, vol. 15(2), pages 1-23, January.
    3. Xiangxi Lou & Penglei Yan & Binglei Jiao & Qingye Li & Panpan Xu & Lei Wang & Liang Zhang & Muhan Cao & Guiling Wang & Zheng Chen & Qiao Zhang & Jinxing Chen, 2024. "Grave-to-cradle photothermal upcycling of waste polyesters over spent LiCoO2," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Ermanno Miele & Wesley M. Dose & Ilya Manyakin & Michael H. Frosz & Zachary Ruff & Michael F. L. Volder & Clare P. Grey & Jeremy J. Baumberg & Tijmen G. Euser, 2022. "Hollow-core optical fibre sensors for operando Raman spectroscopy investigation of Li-ion battery liquid electrolytes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Tony Addison & Alan R. Roe, 2024. "Extractive industries: imperatives, opportunities, and dilemmas in the net-zero transition," WIDER Working Paper Series wp-2024-26, World Institute for Development Economic Research (UNU-WIDER).
    6. Cagli, Efe Caglar, 2023. "The volatility spillover between battery metals and future mobility stocks: Evidence from the time-varying frequency connectedness approach," Resources Policy, Elsevier, vol. 86(PA).
    7. John H. T. Luong & Cang Tran & Di Ton-That, 2022. "A Paradox over Electric Vehicles, Mining of Lithium for Car Batteries," Energies, MDPI, vol. 15(21), pages 1-25, October.
    8. Makeen, Peter & Ghali, Hani A. & Memon, Saim & Duan, Fang, 2022. "Impacts of electric vehicle fast charging under dynamic temperature and humidity: Experimental and theoretically validated model analyses," Energy, Elsevier, vol. 261(PB).
    9. Charles Lincoln Kenji Yamamura & Harmi Takiya & Cláudia Aparecida Soares Machado & José Carlos Curvelo Santana & José Alberto Quintanilha & Fernando Tobal Berssaneti, 2022. "Electric Cars in Brazil: An Analysis of Core Green Technologies and the Transition Process," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    10. Jay N. Meegoda & Sarvagna Malladi & Isabel C. Zayas, 2022. "End-of-Life Management of Electric Vehicle Lithium-Ion Batteries in the United States," Clean Technol., MDPI, vol. 4(4), pages 1-13, November.
    11. Gaurvendra Singh & Subhas Chandra Misra & Yash Daultani & Shubhendu Singh, 2024. "Electric vehicle adoption and sustainability: Insights from the bibliometric analysis, cluster analysis, and morphology analysis," Operations Management Research, Springer, vol. 17(2), pages 635-659, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:596:y:2021:i:7872:d:10.1038_d41586-021-02222-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.