IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v595y2021i7865d10.1038_s41586-021-03601-4.html
   My bibliography  Save this article

Ridgecrest aftershocks at Coso suppressed by thermal destressing

Author

Listed:
  • Kyungjae Im

    (California Institute of Technology)

  • Jean-Philippe Avouac

    (California Institute of Technology)

  • Elías R. Heimisson

    (California Institute of Technology
    Swiss Seismological Service)

  • Derek Elsworth

    (EMS Energy Institute, Pennsylvania State University
    G3 Center, Pennsylvania State University)

Abstract

Geothermal and volcanic areas are prone to earthquake triggering1,2. The Coso geothermal field in California lies just north of the surface ruptures driven by the 2019 Ridgecrest earthquake (moment magnitude Mw = 7.1), in an area where changes in coseismic stress should have triggered aftershocks3,4. However, no aftershocks were observed there4. Here we show that 30 years of geothermal heat production at Coso depleted shear stresses within the geothermal reservoir. Thermal contraction of the reservoir initially induced substantial seismicity, as observed in the Coso geothermal reservoir, but subsequently depleted the stress available to drive the aftershocks during the Ridgecrest sequence. This destressing changed the faulting style of the reservoir and impeded aftershock triggering. Although unlikely to have been the case for the Ridgecrest earthquake, such a destressed zone could, in principle, impede the propagation of a large earthquake.

Suggested Citation

  • Kyungjae Im & Jean-Philippe Avouac & Elías R. Heimisson & Derek Elsworth, 2021. "Ridgecrest aftershocks at Coso suppressed by thermal destressing," Nature, Nature, vol. 595(7865), pages 70-74, July.
  • Handle: RePEc:nat:nature:v:595:y:2021:i:7865:d:10.1038_s41586-021-03601-4
    DOI: 10.1038/s41586-021-03601-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03601-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03601-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guoyan Jiang & Andrew J. Barbour & Robert J. Skoumal & Kathryn Materna & Joshua Taron & Aren Crandall-Bear, 2024. "Relatively stable pressure effects and time-increasing thermal contraction control Heber geothermal field deformation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. McLean, Matthew L. & Espinoza, D. Nicolas, 2023. "Thermal destressing: Implications for short-circuiting in enhanced geothermal systems," Renewable Energy, Elsevier, vol. 202(C), pages 736-755.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:595:y:2021:i:7865:d:10.1038_s41586-021-03601-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.