IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v591y2021i7848d10.1038_s41586-021-03230-x.html
   My bibliography  Save this article

Structure and inhibition mechanism of the human citrate transporter NaCT

Author

Listed:
  • David B. Sauer

    (New York University School of Medicine
    New York University School of Medicine)

  • Jinmei Song

    (New York University School of Medicine
    New York University School of Medicine)

  • Bing Wang

    (New York University School of Medicine)

  • Jacob K. Hilton

    (National Institute of Neurological Disorders and Stroke, National Institutes of Health)

  • Nathan K. Karpowich

    (New York University School of Medicine
    New York University School of Medicine
    Janssen Pharmaceuticals)

  • Joseph A. Mindell

    (National Institute of Neurological Disorders and Stroke, National Institutes of Health)

  • William J. Rice

    (New York University School of Medicine
    New York University School of Medicine)

  • Da-Neng Wang

    (New York University School of Medicine
    New York University School of Medicine)

Abstract

Citrate is best known as an intermediate in the tricarboxylic acid cycle of the cell. In addition to this essential role in energy metabolism, the tricarboxylate anion also acts as both a precursor and a regulator of fatty acid synthesis1–3. Thus, the rate of fatty acid synthesis correlates directly with the cytosolic concentration of citrate4,5. Liver cells import citrate through the sodium-dependent citrate transporter NaCT (encoded by SLC13A5) and, as a consequence, this protein is a potential target for anti-obesity drugs. Here, to understand the structural basis of its inhibition mechanism, we determined cryo-electron microscopy structures of human NaCT in complexes with citrate or a small-molecule inhibitor. These structures reveal how the inhibitor—which binds to the same site as citrate—arrests the transport cycle of NaCT. The NaCT–inhibitor structure also explains why the compound selectively inhibits NaCT over two homologous human dicarboxylate transporters, and suggests ways to further improve the affinity and selectivity. Finally, the NaCT structures provide a framework for understanding how various mutations abolish the transport activity of NaCT in the brain and thereby cause epilepsy associated with mutations in SLC13A5 in newborns (which is known as SLC13A5-epilepsy)6–8.

Suggested Citation

  • David B. Sauer & Jinmei Song & Bing Wang & Jacob K. Hilton & Nathan K. Karpowich & Joseph A. Mindell & William J. Rice & Da-Neng Wang, 2021. "Structure and inhibition mechanism of the human citrate transporter NaCT," Nature, Nature, vol. 591(7848), pages 157-161, March.
  • Handle: RePEc:nat:nature:v:591:y:2021:i:7848:d:10.1038_s41586-021-03230-x
    DOI: 10.1038/s41586-021-03230-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03230-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03230-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yingying Guo & Yuanyuan Zhang & Renhong Yan & Bangdong Huang & Fangfei Ye & Liushu Wu & Ximin Chi & Yi shi & Qiang Zhou, 2022. "Cryo-EM structures of recombinant human sodium-potassium pump determined in three different states," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Huanyu Z. Li & Ashley C. W. Pike & Irina Lotsaris & Gamma Chi & Jesper S. Hansen & Sarah C. Lee & Karin E. J. Rödström & Simon R. Bushell & David Speedman & Adam Evans & Dong Wang & Didi He & Leela Sh, 2024. "Structure and function of the SIT1 proline transporter in complex with the COVID-19 receptor ACE2," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Yafei Yuan & Fang Kong & Hanwen Xu & Angqi Zhu & Nieng Yan & Chuangye Yan, 2022. "Cryo-EM structure of human glucose transporter GLUT4," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. David B. Sauer & Jennifer J. Marden & Joseph C. Sudar & Jinmei Song & Christopher Mulligan & Da-Neng Wang, 2022. "Structural basis of ion – substrate coupling in the Na+-dependent dicarboxylate transporter VcINDY," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:591:y:2021:i:7848:d:10.1038_s41586-021-03230-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.