IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v590y2021i7846d10.1038_s41586-021-03196-w.html
   My bibliography  Save this article

Visualization of the mechanosensitive ion channel MscS under membrane tension

Author

Listed:
  • Yixiao Zhang

    (The Rockefeller University)

  • Csaba Daday

    (Max Planck Institute for Biophysical Chemistry)

  • Ruo-Xu Gu

    (Max Planck Institute for Biophysical Chemistry)

  • Charles D. Cox

    (University of New South Wales
    Victor Chang Cardiac Research Institute)

  • Boris Martinac

    (University of New South Wales
    Victor Chang Cardiac Research Institute)

  • Bert L. Groot

    (Max Planck Institute for Biophysical Chemistry)

  • Thomas Walz

    (The Rockefeller University)

Abstract

Mechanosensitive channels sense mechanical forces in cell membranes and underlie many biological sensing processes1–3. However, how exactly they sense mechanical force remains under investigation4. The bacterial mechanosensitive channel of small conductance, MscS, is one of the most extensively studied mechanosensitive channels4–8, but how it is regulated by membrane tension remains unclear, even though the structures are known for its open and closed states9–11. Here we used cryo-electron microscopy to determine the structure of MscS in different membrane environments, including one that mimics a membrane under tension. We present the structures of MscS in the subconducting and desensitized states, and demonstrate that the conformation of MscS in a lipid bilayer in the open state is dynamic. Several associated lipids have distinct roles in MscS mechanosensation. Pore lipids are necessary to prevent ion conduction in the closed state. Gatekeeper lipids stabilize the closed conformation and dissociate with membrane tension, allowing the channel to open. Pocket lipids in a solvent-exposed pocket between subunits are pulled out under sustained tension, allowing the channel to transition to the subconducting state and then to the desensitized state. Our results provide a mechanistic underpinning and expand on the ‘force-from-lipids’ model for MscS mechanosensation4,11.

Suggested Citation

  • Yixiao Zhang & Csaba Daday & Ruo-Xu Gu & Charles D. Cox & Boris Martinac & Bert L. Groot & Thomas Walz, 2021. "Visualization of the mechanosensitive ion channel MscS under membrane tension," Nature, Nature, vol. 590(7846), pages 509-514, February.
  • Handle: RePEc:nat:nature:v:590:y:2021:i:7846:d:10.1038_s41586-021-03196-w
    DOI: 10.1038/s41586-021-03196-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03196-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03196-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Philipp A. M. Schmidpeter & John T. Petroff & Leila Khajoueinejad & Aboubacar Wague & Cheryl Frankfater & Wayland W. L. Cheng & Crina M. Nimigean & Paul M. Riegelhaupt, 2023. "Membrane phospholipids control gating of the mechanosensitive potassium leak channel TREK1," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Jingying Zhang & Grigory Maksaev & Peng Yuan, 2023. "Open structure and gating of the Arabidopsis mechanosensitive ion channel MSL10," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Mingfeng Zhang & Yuanyue Shan & Charles D. Cox & Duanqing Pei, 2023. "A mechanical-coupling mechanism in OSCA/TMEM63 channel mechanosensitivity," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Sebastian Jojoa-Cruz & Kei Saotome & Che Chun Alex Tsui & Wen-Hsin Lee & Mark S. P. Sansom & Swetha E. Murthy & Ardem Patapoutian & Andrew B. Ward, 2022. "Structural insights into the Venus flytrap mechanosensitive ion channel Flycatcher1," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Yuanyue Shan & Mengmeng Zhang & Meiyu Chen & Xinyi Guo & Ying Li & Mingfeng Zhang & Duanqing Pei, 2024. "Activation mechanisms of dimeric mechanosensitive OSCA/TMEM63 channels," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Jonathan Mount & Grigory Maksaev & Brock T. Summers & James A. J. Fitzpatrick & Peng Yuan, 2022. "Structural basis for mechanotransduction in a potassium-dependent mechanosensitive ion channel," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:590:y:2021:i:7846:d:10.1038_s41586-021-03196-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.