IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v585y2020i7825d10.1038_s41586-020-2706-x.html
   My bibliography  Save this article

Epigenetic gene silencing by heterochromatin primes fungal resistance

Author

Listed:
  • Sito Torres-Garcia

    (University of Edinburgh)

  • Imtiyaz Yaseen

    (University of Edinburgh)

  • Manu Shukla

    (University of Edinburgh)

  • Pauline N. C. B. Audergon

    (University of Edinburgh
    Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology)

  • Sharon A. White

    (University of Edinburgh)

  • Alison L. Pidoux

    (University of Edinburgh)

  • Robin C. Allshire

    (University of Edinburgh)

Abstract

Heterochromatin that depends on histone H3 lysine 9 methylation (H3K9me) renders embedded genes transcriptionally silent1–3. In the fission yeast Schizosaccharomyces pombe, H3K9me heterochromatin can be transmitted through cell division provided the counteracting demethylase Epe1 is absent4,5. Heterochromatin heritability might allow wild-type cells under certain conditions to acquire epimutations, which could influence phenotype through unstable gene silencing rather than DNA change6,7. Here we show that heterochromatin-dependent epimutants resistant to caffeine arise in fission yeast grown with threshold levels of caffeine. Isolates with unstable resistance have distinct heterochromatin islands with reduced expression of embedded genes, including some whose mutation confers caffeine resistance. Forced heterochromatin formation at implicated loci confirms that resistance results from heterochromatin-mediated silencing. Our analyses reveal that epigenetic processes promote phenotypic plasticity, letting wild-type cells adapt to unfavourable environments without genetic alteration. In some isolates, subsequent or coincident gene-amplification events augment resistance. Caffeine affects two anti-silencing factors: Epe1 is downregulated, reducing its chromatin association, and a shortened isoform of Mst2 histone acetyltransferase is expressed. Thus, heterochromatin-dependent epimutation provides a bet-hedging strategy allowing cells to adapt transiently to insults while remaining genetically wild type. Isolates with unstable caffeine resistance show cross-resistance to antifungal agents, suggesting that related heterochromatin-dependent processes may contribute to resistance of plant and human fungal pathogens to such agents.

Suggested Citation

  • Sito Torres-Garcia & Imtiyaz Yaseen & Manu Shukla & Pauline N. C. B. Audergon & Sharon A. White & Alison L. Pidoux & Robin C. Allshire, 2020. "Epigenetic gene silencing by heterochromatin primes fungal resistance," Nature, Nature, vol. 585(7825), pages 453-458, September.
  • Handle: RePEc:nat:nature:v:585:y:2020:i:7825:d:10.1038_s41586-020-2706-x
    DOI: 10.1038/s41586-020-2706-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2706-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2706-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Caojie Liu & Qiuchan Xiong & Qiwen Li & Weimin Lin & Shuang Jiang & Danting Zhang & Yuan Wang & Xiaobo Duan & Ping Gong & Ning Kang, 2022. "CHD7 regulates bone-fat balance by suppressing PPAR-γ signaling," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:585:y:2020:i:7825:d:10.1038_s41586-020-2706-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.