IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v585y2020i7825d10.1038_s41586-020-2685-y.html
   My bibliography  Save this article

A submicrometre silicon-on-insulator resonator for ultrasound detection

Author

Listed:
  • Rami Shnaiderman

    (Technische Universität München
    Institute of Biological and Medical Imaging, Helmholtz Zentrum München)

  • Georg Wissmeyer

    (Technische Universität München
    Institute of Biological and Medical Imaging, Helmholtz Zentrum München)

  • Okan Ülgen

    (Technische Universität München
    Institute of Biological and Medical Imaging, Helmholtz Zentrum München)

  • Qutaiba Mustafa

    (Technische Universität München
    Institute of Biological and Medical Imaging, Helmholtz Zentrum München)

  • Andriy Chmyrov

    (Technische Universität München
    Institute of Biological and Medical Imaging, Helmholtz Zentrum München)

  • Vasilis Ntziachristos

    (Technische Universität München
    Institute of Biological and Medical Imaging, Helmholtz Zentrum München)

Abstract

Ultrasound detectors use high-frequency sound waves to image objects and measure distances, but the resolution of these readings is limited by the physical dimensions of the detecting element. Point-like broadband ultrasound detection can greatly increase the resolution of ultrasonography and optoacoustic (photoacoustic) imaging1,2, but current ultrasound detectors, such as those used for medical imaging, cannot be miniaturized sufficiently. Piezoelectric transducers lose sensitivity quadratically with size reduction3, and optical microring resonators4 and Fabry–Pérot etalons5 cannot adequately confine light to dimensions smaller than about 50 micrometres. Micromachining methods have been used to generate arrays of capacitive6 and piezoelectric7 transducers, but with bandwidths of only a few megahertz and dimensions exceeding 70 micrometres. Here we use the widely available silicon-on-insulator technology to develop a miniaturized ultrasound detector, with a sensing area of only 220 nanometres by 500 nanometres. The silicon-on-insulator-based optical resonator design provides per-area sensitivity that is 1,000 times higher than that of microring resonators and 100,000,000 times better than that of piezoelectric detectors. Our design also enables an ultrawide detection bandwidth, reaching 230 megahertz at −6 decibels. In addition to making the detectors suitable for manufacture in very dense arrays, we show that the submicrometre sensing area enables super-resolution detection and imaging performance. We demonstrate imaging of features 50 times smaller than the wavelength of ultrasound detected. Our detector enables ultra-miniaturization of ultrasound readings, enabling ultrasound imaging at a resolution comparable to that achieved with optical microscopy, and potentially enabling the development of very dense ultrasound arrays on a silicon chip.

Suggested Citation

  • Rami Shnaiderman & Georg Wissmeyer & Okan Ülgen & Qutaiba Mustafa & Andriy Chmyrov & Vasilis Ntziachristos, 2020. "A submicrometre silicon-on-insulator resonator for ultrasound detection," Nature, Nature, vol. 585(7825), pages 372-378, September.
  • Handle: RePEc:nat:nature:v:585:y:2020:i:7825:d:10.1038_s41586-020-2685-y
    DOI: 10.1038/s41586-020-2685-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2685-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2685-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yoav Hazan & Ahiad Levi & Michael Nagli & Amir Rosenthal, 2022. "Silicon-photonics acoustic detector for optoacoustic micro-tomography," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Yizhi Liang & Wubing Fu & Qiang Li & Xiaolong Chen & Huojiao Sun & Lidai Wang & Long Jin & Wei Huang & Bai-Ou Guan, 2022. "Optical-resolution functional gastrointestinal photoacoustic endoscopy based on optical heterodyne detection of ultrasound," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Tai Anh La & Okan Ülgen & Rami Shnaiderman & Vasilis Ntziachristos, 2024. "Bragg grating etalon-based optical fiber for ultrasound and optoacoustic detection," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Jingshun Pan & Qiang Li & Yaoming Feng & Ruifeng Zhong & Zhihao Fu & Shuixian Yang & Weiyuan Sun & Bin Zhang & Qi Sui & Jun Chen & Yuecheng Shen & Zhaohui Li, 2023. "Parallel interrogation of the chalcogenide-based micro-ring sensor array for photoacoustic tomography," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:585:y:2020:i:7825:d:10.1038_s41586-020-2685-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.