IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v583y2020i7818d10.1038_s41586-020-2527-y.html
   My bibliography  Save this article

A leptin–BDNF pathway regulating sympathetic innervation of adipose tissue

Author

Listed:
  • Putianqi Wang

    (The Rockefeller University)

  • Ken H. Loh

    (The Rockefeller University)

  • Michelle Wu

    (The Rockefeller University)

  • Donald A. Morgan

    (University of Iowa)

  • Marc Schneeberger

    (The Rockefeller University)

  • Xiaofei Yu

    (The Rockefeller University
    Fudan University)

  • Jingyi Chi

    (The Rockefeller University)

  • Christin Kosse

    (The Rockefeller University)

  • Damian Kim

    (The Rockefeller University)

  • Kamal Rahmouni

    (University of Iowa)

  • Paul Cohen

    (The Rockefeller University)

  • Jeffrey Friedman

    (The Rockefeller University)

Abstract

Mutations in the leptin gene (ob) result in a metabolic disorder that includes severe obesity1, and defects in thermogenesis2 and lipolysis3, both of which are adipose tissue functions regulated by the sympathetic nervous system. However, the basis of these sympathetic-associated abnormalities remains unclear. Furthermore, chronic leptin administration reverses these abnormalities in adipose tissue, but the underlying mechanism remains to be discovered. Here we report that ob/ob mice, as well as leptin-resistant diet-induced obese mice, show significant reductions of sympathetic innervation of subcutaneous white and brown adipose tissue. Chronic leptin treatment of ob/ob mice restores adipose tissue sympathetic innervation, which in turn is necessary to correct the associated functional defects. The effects of leptin on innervation are mediated via agouti-related peptide and pro-opiomelanocortin neurons in the hypothalamic arcuate nucleus. Deletion of the gene encoding the leptin receptor in either population leads to reduced innervation in fat. These agouti-related peptide and pro-opiomelanocortin neurons act via brain-derived neurotropic factor-expressing neurons in the paraventricular nucleus of the hypothalamus (BDNFPVH). Deletion of BDNFPVH blunts the effects of leptin on innervation. These data show that leptin signalling regulates the plasticity of sympathetic architecture of adipose tissue via a top-down neural pathway that is crucial for energy homeostasis.

Suggested Citation

  • Putianqi Wang & Ken H. Loh & Michelle Wu & Donald A. Morgan & Marc Schneeberger & Xiaofei Yu & Jingyi Chi & Christin Kosse & Damian Kim & Kamal Rahmouni & Paul Cohen & Jeffrey Friedman, 2020. "A leptin–BDNF pathway regulating sympathetic innervation of adipose tissue," Nature, Nature, vol. 583(7818), pages 839-844, July.
  • Handle: RePEc:nat:nature:v:583:y:2020:i:7818:d:10.1038_s41586-020-2527-y
    DOI: 10.1038/s41586-020-2527-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2527-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2527-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sheng Qiu & Qinan Wu & Hao Wang & Dongfang Liu & Chen Chen & Zhiming Zhu & Hongting Zheng & Gangyi Yang & Ling Li & Mengliu Yang, 2024. "AZGP1 in POMC neurons modulates energy homeostasis and metabolism through leptin-mediated STAT3 phosphorylation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Elisa Duregotti & Christina M. Reumiller & Ursula Mayr & Maria Hasman & Lukas E. Schmidt & Sean A. Burnap & Konstantinos Theofilatos & Javier Barallobre-Barreiro & Arne Beran & Maria Grandoch & Alessa, 2022. "Reduced secretion of neuronal growth regulator 1 contributes to impaired adipose-neuronal crosstalk in obesity," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Dan Chen & Yong Qi & Jia Zhang & Yunlei Yang, 2022. "Deconstruction of a hypothalamic astrocyte-white adipocyte sympathetic axis that regulates lipolysis in mice," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Yong Hu & Liu Liu & Yong Chen & Xiaohui Zhang & Haifeng Zhou & Sheng Hu & Xu Li & Meixin Li & Juanjuan Li & Siyuan Cheng & Yong Liu & Yancheng Xu & Wei Yan, 2023. "Cancer-cell-secreted miR-204-5p induces leptin signalling pathway in white adipose tissue to promote cancer-associated cachexia," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:583:y:2020:i:7818:d:10.1038_s41586-020-2527-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.