IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v582y2020i7812d10.1038_s41586-020-2383-9.html
   My bibliography  Save this article

An in vitro model of early anteroposterior organization during human development

Author

Listed:
  • Naomi Moris

    (University of Cambridge)

  • Kerim Anlas

    (University of Cambridge
    European Molecular Biology Laboratory (EMBL) Barcelona)

  • Susanne C. van den Brink

    (Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht)

  • Anna Alemany

    (Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht)

  • Julia Schröder

    (University of Cambridge
    Heidelberg University)

  • Sabitri Ghimire

    (University of Cambridge)

  • Tina Balayo

    (University of Cambridge
    Universidad de las Palmas de Gran Canaria (ULPGC))

  • Alexander van Oudenaarden

    (Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht)

  • Alfonso Martinez Arias

    (University of Cambridge)

Abstract

The body plan of the mammalian embryo is shaped through the process of gastrulation, an early developmental event that transforms an isotropic group of cells into an ensemble of tissues that is ordered with reference to three orthogonal axes1. Although model organisms have provided much insight into this process, we know very little about gastrulation in humans, owing to the difficulty of obtaining embryos at such early stages of development and the ethical and technical restrictions that limit the feasibility of observing gastrulation ex vivo2. Here we show that human embryonic stem cells can be used to generate gastruloids—three-dimensional multicellular aggregates that differentiate to form derivatives of the three germ layers organized spatiotemporally, without additional extra-embryonic tissues. Human gastruloids undergo elongation along an anteroposterior axis, and we use spatial transcriptomics to show that they exhibit patterned gene expression. This includes a signature of somitogenesis that suggests that 72-h human gastruloids show some features of Carnegie-stage-9 embryos3. Our study represents an experimentally tractable model system to reveal and examine human-specific regulatory processes that occur during axial organization in early development.

Suggested Citation

  • Naomi Moris & Kerim Anlas & Susanne C. van den Brink & Anna Alemany & Julia Schröder & Sabitri Ghimire & Tina Balayo & Alexander van Oudenaarden & Alfonso Martinez Arias, 2020. "An in vitro model of early anteroposterior organization during human development," Nature, Nature, vol. 582(7812), pages 410-415, June.
  • Handle: RePEc:nat:nature:v:582:y:2020:i:7812:d:10.1038_s41586-020-2383-9
    DOI: 10.1038/s41586-020-2383-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2383-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2383-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ana Sousa-Ortega & Javier Vázquez-Marín & Estefanía Sanabria-Reinoso & Jorge Corbacho & Rocío Polvillo & Alejandro Campoy-López & Lorena Buono & Felix Loosli & María Almuedo-Castillo & Juan R. Martíne, 2023. "A Yap-dependent mechanoregulatory program sustains cell migration for embryo axis assembly," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Daniele Kunz & Anfu Wang & Chon U Chan & Robyn H. Pritchard & Wenyu Wang & Filomena Gallo & Charles R. Bradshaw & Elisa Terenzani & Karin H. Müller & Yan Yan Shery Huang & Fengzhu Xiong, 2023. "Downregulation of extraembryonic tension controls body axis formation in avian embryos," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Marina Sanaki-Matsumiya & Mitsuhiro Matsuda & Nicola Gritti & Fumio Nakaki & James Sharpe & Vikas Trivedi & Miki Ebisuya, 2022. "Periodic formation of epithelial somites from human pluripotent stem cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Cassie L. Kemmler & Jana Smolikova & Hannah R. Moran & Brandon J. Mannion & Dunja Knapp & Fabian Lim & Anna Czarkwiani & Viviana Hermosilla Aguayo & Vincent Rapp & Olivia E. Fitch & Seraina Bötschi & , 2023. "Conserved enhancers control notochord expression of vertebrate Brachyury," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Hyung Chul Lee & Nidia M. M. Oliveira & Cato Hastings & Peter Baillie-Benson & Adam A. Moverley & Hui-Chun Lu & Yi Zheng & Elise L. Wilby & Timothy T. Weil & Karen M. Page & Jianping Fu & Naomi Moris , 2024. "Regulation of long-range BMP gradients and embryonic polarity by propagation of local calcium-firing activity," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:582:y:2020:i:7812:d:10.1038_s41586-020-2383-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.