IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v582y2020i7810d10.1038_s41586-020-2321-x.html
   My bibliography  Save this article

Coherent interaction between free electrons and a photonic cavity

Author

Listed:
  • Kangpeng Wang

    (Technion – Israel Institute of Technology)

  • Raphael Dahan

    (Technion – Israel Institute of Technology)

  • Michael Shentcis

    (Technion – Israel Institute of Technology)

  • Yaron Kauffmann

    (Technion – Israel Institute of Technology)

  • Adi Ben Hayun

    (Technion – Israel Institute of Technology)

  • Ori Reinhardt

    (Technion – Israel Institute of Technology)

  • Shai Tsesses

    (Technion – Israel Institute of Technology)

  • Ido Kaminer

    (Technion – Israel Institute of Technology)

Abstract

Advances in the research of interactions between ultrafast free electrons and light have introduced a previously unknown kind of quantum matter, quantum free-electron wavepackets1–5. So far, studies of the interactions of cavity-confined light with quantum matter have focused on bound electron systems, such as atoms, quantum dots and quantum circuits, which are considerably limited by their fixed energy states, spectral range and selection rules. By contrast, quantum free-electron wavepackets have no such limits, but so far no experiment has shown the influence of a photonic cavity on quantum free-electron wavepackets. Here we develop a platform for multidimensional nanoscale imaging and spectroscopy of free-electron interactions with photonic cavities. We directly measure the cavity-photon lifetime via a coherent free-electron probe and observe an enhancement of more than an order of magnitude in the interaction strength relative to previous experiments of electron–photon interactions. Our free-electron probe resolves the spatiotemporal and energy–momentum information of the interaction. The quantum nature of the electrons is verified by spatially mapping Rabi oscillations of the electron spectrum. The interactions between free electrons and cavity photons could enable low-dose, ultrafast electron microscopy of soft matter or other beam-sensitive materials. Such interactions may also open paths towards using free electrons for quantum information processing and quantum sensing. Future studies could achieve free-electron strong coupling6,7, photon quantum state synthesis8 and quantum nonlinear phenomena such as cavity electro-optomechanics9.

Suggested Citation

  • Kangpeng Wang & Raphael Dahan & Michael Shentcis & Yaron Kauffmann & Adi Ben Hayun & Ori Reinhardt & Shai Tsesses & Ido Kaminer, 2020. "Coherent interaction between free electrons and a photonic cavity," Nature, Nature, vol. 582(7810), pages 50-54, June.
  • Handle: RePEc:nat:nature:v:582:y:2020:i:7810:d:10.1038_s41586-020-2321-x
    DOI: 10.1038/s41586-020-2321-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2321-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2321-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tal Fishman & Urs Haeusler & Raphael Dahan & Michael Yannai & Yuval Adiv & Tom Lenkiewicz Abudi & Roy Shiloh & Ori Eyal & Peyman Yousefi & Gadi Eisenstein & Peter Hommelhoff & Ido Kaminer, 2023. "Imaging the field inside nanophotonic accelerators," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. John H. Gaida & Hugo Lourenço-Martins & Sergey V. Yalunin & Armin Feist & Murat Sivis & Thorsten Hohage & F. Javier García de Abajo & Claus Ropers, 2023. "Lorentz microscopy of optical fields," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:582:y:2020:i:7810:d:10.1038_s41586-020-2321-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.