IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v581y2020i7807d10.1038_s41586-020-2241-9.html
   My bibliography  Save this article

Engineering covalently bonded 2D layered materials by self-intercalation

Author

Listed:
  • Xiaoxu Zhao

    (National University of Singapore
    National University of Singapore)

  • Peng Song

    (National University of Singapore)

  • Chengcai Wang

    (Southern University of Science and Technology)

  • Anders C. Riis-Jensen

    (Technical University of Denmark)

  • Wei Fu

    (National University of Singapore)

  • Ya Deng

    (Nanyang Technological University)

  • Dongyang Wan

    (NUSNNI-NanoCore, National University of Singapore)

  • Lixing Kang

    (Nanyang Technological University)

  • Shoucong Ning

    (National University of Singapore)

  • Jiadong Dan

    (National University of Singapore)

  • T. Venkatesan

    (National University of Singapore
    NUSNNI-NanoCore, National University of Singapore)

  • Zheng Liu

    (Nanyang Technological University)

  • Wu Zhou

    (University of Chinese Academy of Sciences)

  • Kristian S. Thygesen

    (Technical University of Denmark)

  • Xin Luo

    (Sun Yat-sen University)

  • Stephen J. Pennycook

    (National University of Singapore)

  • Kian Ping Loh

    (National University of Singapore)

Abstract

Two-dimensional (2D) materials1–5 offer a unique platform from which to explore the physics of topology and many-body phenomena. New properties can be generated by filling the van der Waals gap of 2D materials with intercalants6,7; however, post-growth intercalation has usually been limited to alkali metals8–10. Here we show that the self-intercalation of native atoms11,12 into bilayer transition metal dichalcogenides during growth generates a class of ultrathin, covalently bonded materials, which we name ic-2D. The stoichiometry of these materials is defined by periodic occupancy patterns of the octahedral vacancy sites in the van der Waals gap, and their properties can be tuned by varying the coverage and the spatial arrangement of the filled sites7,13. By performing growth under high metal chemical potential14,15 we can access a range of tantalum-intercalated TaS(Se)y, including 25% Ta-intercalated Ta9S16, 33.3% Ta-intercalated Ta7S12, 50% Ta-intercalated Ta10S16, 66.7% Ta-intercalated Ta8Se12 (which forms a Kagome lattice) and 100% Ta-intercalated Ta9Se12. Ferromagnetic order was detected in some of these intercalated phases. We also demonstrate that self-intercalated V11S16, In11Se16 and FexTey can be grown under metal-rich conditions. Our work establishes self-intercalation as an approach through which to grow a new class of 2D materials with stoichiometry- or composition-dependent properties.

Suggested Citation

  • Xiaoxu Zhao & Peng Song & Chengcai Wang & Anders C. Riis-Jensen & Wei Fu & Ya Deng & Dongyang Wan & Lixing Kang & Shoucong Ning & Jiadong Dan & T. Venkatesan & Zheng Liu & Wu Zhou & Kristian S. Thyges, 2020. "Engineering covalently bonded 2D layered materials by self-intercalation," Nature, Nature, vol. 581(7807), pages 171-177, May.
  • Handle: RePEc:nat:nature:v:581:y:2020:i:7807:d:10.1038_s41586-020-2241-9
    DOI: 10.1038/s41586-020-2241-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2241-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2241-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fei Wang & Yang Zhang & Zhijie Wang & Haoxiong Zhang & Xi Wu & Changhua Bao & Jia Li & Pu Yu & Shuyun Zhou, 2023. "Ionic liquid gating induced self-intercalation of transition metal chalcogenides," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Lingxin Luo & Lingxiang Hou & Xueping Cui & Pengxin Zhan & Ping He & Chuying Dai & Ruian Li & Jichen Dong & Ye Zou & Guoming Liu & Yanpeng Liu & Jian Zheng, 2024. "Self-condensation-assisted chemical vapour deposition growth of atomically two-dimensional MOF single-crystals," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Liang Mei & Mingzi Sun & Ruijie Yang & Yaqin Zhang & Yuefeng Zhang & Zhen Zhang & Long Zheng & Ye Chen & Qinghua Zhang & Jiang Zhou & Ye Zhu & Kenneth M. Y. Leung & Wenjun Zhang & Jun Fan & Bolong Hua, 2024. "Metallic 1T/1T′ phase TMD nanosheets with enhanced chemisorption sites for ultrahigh-efficiency lead removal," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Yan Zhao & Zhengwei Nie & Hao Hong & Xia Qiu & Shiyi Han & Yue Yu & Mengxi Liu & Xiaohui Qiu & Kaihui Liu & Sheng Meng & Lianming Tong & Jin Zhang, 2023. "Spectroscopic visualization and phase manipulation of chiral charge density waves in 1T-TaS2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Haibin Si & Dexin Du & Chengcheng Jiao & Yan Sun & Lu Li & Bo Tang, 2024. "Biomimetic synergistic effect of redox site and Lewis acid for construction of efficient artificial enzyme," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Hongguang Wang & Jiawei Zhang & Chen Shen & Chao Yang & Kathrin Küster & Julia Deuschle & Ulrich Starke & Hongbin Zhang & Masahiko Isobe & Dennis Huang & Peter A. van Aken & Hidenori Takagi, 2024. "Direct visualization of stacking-selective self-intercalation in epitaxial Nb1+xSe2 films," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Yi Hu & Lukas Rogée & Weizhen Wang & Lyuchao Zhuang & Fangyi Shi & Hui Dong & Songhua Cai & Beng Kang Tay & Shu Ping Lau, 2023. "Extendable piezo/ferroelectricity in nonstoichiometric 2D transition metal dichalcogenides," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Qianqian He & Kunpeng Si & Zian Xu & Xingguo Wang & Chunqiao Jin & Yahan Yang & Juntian Wei & Lingjia Meng & Pengbo Zhai & Peng Zhang & Peizhe Tang & Yongji Gong, 2024. "Direct synthesis of controllable ultrathin heteroatoms-intercalated 2D layered materials," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:581:y:2020:i:7807:d:10.1038_s41586-020-2241-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.