IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v579y2020i7799d10.1038_s41586-020-2085-3.html
   My bibliography  Save this article

Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices

Author

Listed:
  • Yanhao Tang

    (Cornell University)

  • Lizhong Li

    (Cornell University)

  • Tingxin Li

    (Cornell University)

  • Yang Xu

    (Cornell University)

  • Song Liu

    (Columbia University)

  • Katayun Barmak

    (Columbia University)

  • Kenji Watanabe

    (National Institute for Materials Science)

  • Takashi Taniguchi

    (National Institute for Materials Science)

  • Allan H. MacDonald

    (University of Texas at Austin)

  • Jie Shan

    (Cornell University
    Cornell University
    Kavli Institute at Cornell for Nanoscale Science)

  • Kin Fai Mak

    (Cornell University
    Cornell University
    Kavli Institute at Cornell for Nanoscale Science)

Abstract

The Hubbard model, formulated by physicist John Hubbard in the 1960s1, is a simple theoretical model of interacting quantum particles in a lattice. The model is thought to capture the essential physics of high-temperature superconductors, magnetic insulators and other complex quantum many-body ground states2,3. Although the Hubbard model provides a greatly simplified representation of most real materials, it is nevertheless difficult to solve accurately except in the one-dimensional case2,3. Therefore, the physical realization of the Hubbard model in two or three dimensions, which can act as an analogue quantum simulator (that is, it can mimic the model and simulate its phase diagram and dynamics4,5), has a vital role in solving the strong-correlation puzzle, namely, revealing the physics of a large number of strongly interacting quantum particles. Here we obtain the phase diagram of the two-dimensional triangular-lattice Hubbard model by studying angle-aligned WSe2/WS2 bilayers, which form moiré superlattices6 because of the difference between the lattice constants of the two materials. We probe the charge and magnetic properties of the system by measuring the dependence of its optical response on an out-of-plane magnetic field and on the gate-tuned carrier density. At half-filling of the first hole moiré superlattice band, we observe a Mott insulating state with antiferromagnetic Curie–Weiss behaviour, as expected for a Hubbard model in the strong-interaction regime2,3,7–9. Above half-filling, our experiment suggests a possible quantum phase transition from an antiferromagnetic to a weak ferromagnetic state at filling factors near 0.6. Our results establish a new solid-state platform based on moiré superlattices that can be used to simulate problems in strong-correlation physics that are described by triangular-lattice Hubbard models.

Suggested Citation

  • Yanhao Tang & Lizhong Li & Tingxin Li & Yang Xu & Song Liu & Katayun Barmak & Kenji Watanabe & Takashi Taniguchi & Allan H. MacDonald & Jie Shan & Kin Fai Mak, 2020. "Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices," Nature, Nature, vol. 579(7799), pages 353-358, March.
  • Handle: RePEc:nat:nature:v:579:y:2020:i:7799:d:10.1038_s41586-020-2085-3
    DOI: 10.1038/s41586-020-2085-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2085-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2085-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu-Bo Liu & Jing Zhou & Congjun Wu & Fan Yang, 2023. "Charge-4e superconductivity and chiral metal in 45°-twisted bilayer cuprates and related bilayers," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Søren Ulstrup & Yann in ’t Veld & Jill A. Miwa & Alfred J. H. Jones & Kathleen M. McCreary & Jeremy T. Robinson & Berend T. Jonker & Simranjeet Singh & Roland J. Koch & Eli Rotenberg & Aaron Bostwick , 2024. "Observation of interlayer plasmon polaron in graphene/WS2 heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Jiaxin Zhao & Antonio Fieramosca & Kevin Dini & Ruiqi Bao & Wei Du & Rui Su & Yuan Luo & Weijie Zhao & Daniele Sanvitto & Timothy C. H. Liew & Qihua Xiong, 2023. "Exciton polariton interactions in Van der Waals superlattices at room temperature," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Madeline Winkle & Isaac M. Craig & Stephen Carr & Medha Dandu & Karen C. Bustillo & Jim Ciston & Colin Ophus & Takashi Taniguchi & Kenji Watanabe & Archana Raja & Sinéad M. Griffin & D. Kwabena Bediak, 2023. "Rotational and dilational reconstruction in transition metal dichalcogenide moiré bilayers," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Meng Zhao & Zhongjie Wang & Lu Liu & Chunzheng Wang & Cheng-Yen Liu & Fang Yang & Hua Wu & Chunlei Gao, 2024. "Atomic-scale visualization of the interlayer Rydberg exciton complex in moiré heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Trithep Devakul & Valentin Crépel & Yang Zhang & Liang Fu, 2021. "Magic in twisted transition metal dichalcogenide bilayers," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    7. Hongbing Cai & Abdullah Rasmita & Qinghai Tan & Jia-Min Lai & Ruihua He & Xiangbin Cai & Yan Zhao & Disheng Chen & Naizhou Wang & Zhao Mu & Zumeng Huang & Zhaowei Zhang & John J. H. Eng & Yuanda Liu &, 2023. "Interlayer donor-acceptor pair excitons in MoSe2/WSe2 moiré heterobilayer," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    8. Beini Gao & Daniel G. Suárez-Forero & Supratik Sarkar & Tsung-Sheng Huang & Deric Session & Mahmoud Jalali Mehrabad & Ruihao Ni & Ming Xie & Pranshoo Upadhyay & Jonathan Vannucci & Sunil Mittal & Kenj, 2024. "Excitonic Mott insulator in a Bose-Fermi-Hubbard system of moiré WS2/WSe2 heterobilayer," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    9. Jinjae Kim & Jiwon Park & Hyojin Choi & Taeho Kim & Soonyoung Cha & Yewon Lee & Kenji Watanabe & Takashi Taniguchi & Jonghwan Kim & Moon-Ho Jo & Hyunyong Choi, 2024. "Correlation-driven nonequilibrium exciton site transition in a WSe2/WS2 moiré supercell," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Zhen Lian & Dongxue Chen & Yuze Meng & Xiaotong Chen & Ying Su & Rounak Banerjee & Takashi Taniguchi & Kenji Watanabe & Sefaattin Tongay & Chuanwei Zhang & Yong-Tao Cui & Su-Fei Shi, 2023. "Exciton Superposition across Moiré States in a Semiconducting Moiré Superlattice," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    11. Michael Matty & Eun-Ah Kim, 2022. "Melting of generalized Wigner crystals in transition metal dichalcogenide heterobilayer Moiré systems," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    12. Yuting Tan & Pak Ki Henry Tsang & Vladimir Dobrosavljević, 2022. "Disorder-dominated quantum criticality in moiré bilayers," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    13. Zhen Lian & Dongxue Chen & Lei Ma & Yuze Meng & Ying Su & Li Yan & Xiong Huang & Qiran Wu & Xinyue Chen & Mark Blei & Takashi Taniguchi & Kenji Watanabe & Sefaattin Tongay & Chuanwei Zhang & Yong-Tao , 2023. "Quadrupolar excitons and hybridized interlayer Mott insulator in a trilayer moiré superlattice," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    14. Richen Xiong & Samuel L. Brantly & Kaixiang Su & Jacob H. Nie & Zihan Zhang & Rounak Banerjee & Hayley Ruddick & Kenji Watanabe & Takashi Taniguchi & Seth Ariel Tongay & Cenke Xu & Chenhao Jin, 2024. "Tunable exciton valley-pseudospin orders in moiré superlattices," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Yanhao Tang & Jie Gu & Song Liu & Kenji Watanabe & Takashi Taniguchi & James C. Hone & Kin Fai Mak & Jie Shan, 2022. "Dielectric catastrophe at the Wigner-Mott transition in a moiré superlattice," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    16. Elena Blundo & Federico Tuzi & Salvatore Cianci & Marzia Cuccu & Katarzyna Olkowska-Pucko & Łucja Kipczak & Giorgio Contestabile & Antonio Miriametro & Marco Felici & Giorgio Pettinari & Takashi Tanig, 2024. "Localisation-to-delocalisation transition of moiré excitons in WSe2/MoSe2 heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Riya Sebait & Roberto Rosati & Seok Joon Yun & Krishna P. Dhakal & Samuel Brem & Chandan Biswas & Alexander Puretzky & Ermin Malic & Young Hee Lee, 2023. "Sequential order dependent dark-exciton modulation in bi-layered TMD heterostructure," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Zeya Li & Junwei Huang & Ling Zhou & Zian Xu & Feng Qin & Peng Chen & Xiaojun Sun & Gan Liu & Chengqi Sui & Caiyu Qiu & Yangfan Lu & Huiyang Gou & Xiaoxiang Xi & Toshiya Ideue & Peizhe Tang & Yoshihir, 2023. "An anisotropic van der Waals dielectric for symmetry engineering in functionalized heterointerfaces," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Sunny Gupta & Henry Yu & Boris I. Yakobson, 2022. "Designing 1D correlated-electron states by non-Euclidean topography of 2D monolayers," Nature Communications, Nature, vol. 13(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:579:y:2020:i:7799:d:10.1038_s41586-020-2085-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.