IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v578y2020i7793d10.1038_s41586-020-1955-z.html
   My bibliography  Save this article

Quantum crystal structure in the 250-kelvin superconducting lanthanum hydride

Author

Listed:
  • Ion Errea

    (University of the Basque Country (UPV/EHU)
    Centro de Física de Materiales (CSIC-UPV/EHU)
    Donostia International Physics Center (DIPC))

  • Francesco Belli

    (University of the Basque Country (UPV/EHU)
    Centro de Física de Materiales (CSIC-UPV/EHU))

  • Lorenzo Monacelli

    (Università di Roma La Sapienza)

  • Antonio Sanna

    (Max-Planck Institute of Microstructure Physics)

  • Takashi Koretsune

    (Tohoku University)

  • Terumasa Tadano

    (National Institute for Materials Science)

  • Raffaello Bianco

    (Centro de Física de Materiales (CSIC-UPV/EHU))

  • Matteo Calandra

    (Sorbonne Université, CNRS, Institut des Nanosciences de Paris)

  • Ryotaro Arita

    (University of Tokyo
    RIKEN Center for Emergent Matter Science)

  • Francesco Mauri

    (Università di Roma La Sapienza
    Graphene Labs, Fondazione Istituto Italiano di Tecnologia)

  • José A. Flores-Livas

    (Università di Roma La Sapienza)

Abstract

The discovery of superconductivity at 200 kelvin in the hydrogen sulfide system at high pressures1 demonstrated the potential of hydrogen-rich materials as high-temperature superconductors. Recent theoretical predictions of rare-earth hydrides with hydrogen cages2,3 and the subsequent synthesis of LaH10 with a superconducting critical temperature (Tc) of 250 kelvin4,5 have placed these materials on the verge of achieving the long-standing goal of room-temperature superconductivity. Electrical and X-ray diffraction measurements have revealed a weakly pressure-dependent Tc for LaH10 between 137 and 218 gigapascals in a structure that has a face-centred cubic arrangement of lanthanum atoms5. Here we show that quantum atomic fluctuations stabilize a highly symmetrical $${Fm}\overline{3}{m}$$Fm3¯m crystal structure over this pressure range. The structure is consistent with experimental findings and has a very large electron–phonon coupling constant of 3.5. Although ab initio classical calculations predict that this $${Fm}\overline{3}{m}$$Fm3¯m structure undergoes distortion at pressures below 230 gigapascals2,3, yielding a complex energy landscape, the inclusion of quantum effects suggests that it is the true ground-state structure. The agreement between the calculated and experimental Tc values further indicates that this phase is responsible for the superconductivity observed at 250 kelvin. The relevance of quantum fluctuations calls into question many of the crystal structure predictions that have been made for hydrides within a classical approach and that currently guide the experimental quest for room-temperature superconductivity6–8. Furthermore, we find that quantum effects are crucial for the stabilization of solids with high electron–phonon coupling constants that could otherwise be destabilized by the large electron–phonon interaction9, thus reducing the pressures required for their synthesis.

Suggested Citation

  • Ion Errea & Francesco Belli & Lorenzo Monacelli & Antonio Sanna & Takashi Koretsune & Terumasa Tadano & Raffaello Bianco & Matteo Calandra & Ryotaro Arita & Francesco Mauri & José A. Flores-Livas, 2020. "Quantum crystal structure in the 250-kelvin superconducting lanthanum hydride," Nature, Nature, vol. 578(7793), pages 66-69, February.
  • Handle: RePEc:nat:nature:v:578:y:2020:i:7793:d:10.1038_s41586-020-1955-z
    DOI: 10.1038/s41586-020-1955-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-1955-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-1955-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingkai Bi & Yuki Nakamoto & Peiyu Zhang & Katsuya Shimizu & Bo Zou & Hanyu Liu & Mi Zhou & Guangtao Liu & Hongbo Wang & Yanming Ma, 2022. "Giant enhancement of superconducting critical temperature in substitutional alloy (La,Ce)H9," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Dan Sun & Vasily S. Minkov & Shirin Mozaffari & Ying Sun & Yanming Ma & Stella Chariton & Vitali B. Prakapenka & Mikhail I. Eremets & Luis Balicas & Fedor F. Balakirev, 2021. "High-temperature superconductivity on the verge of a structural instability in lanthanum superhydride," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    3. Cheng Hu & Jiajun Chen & Xianliang Zhou & Yufeng Xie & Xinyue Huang & Zhenghan Wu & Saiqun Ma & Zhichun Zhang & Kunqi Xu & Neng Wan & Yueheng Zhang & Qi Liang & Zhiwen Shi, 2024. "Collapse of carbon nanotubes due to local high-pressure from van der Waals encapsulation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Wuhao Chen & Xiaoli Huang & Dmitrii V. Semenok & Su Chen & Di Zhou & Kexin Zhang & Artem R. Oganov & Tian Cui, 2023. "Enhancement of superconducting properties in the La–Ce–H system at moderate pressures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Roman Lucrezi & Pedro P. Ferreira & Markus Aichhorn & Christoph Heil, 2024. "Temperature and quantum anharmonic lattice effects on stability and superconductivity in lutetium trihydride," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    6. Cong Liu & Ion Errea & Chi Ding & Chris Pickard & Lewis J. Conway & Bartomeu Monserrat & Yue-Wen Fang & Qing Lu & Jian Sun & Jordi Boronat & Claudio Cazorla, 2023. "Excitonic insulator to superconductor phase transition in ultra-compressed helium," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Dominique Laniel & Florian Trybel & Bjoern Winkler & Florian Knoop & Timofey Fedotenko & Saiana Khandarkhaeva & Alena Aslandukova & Thomas Meier & Stella Chariton & Konstantin Glazyrin & Victor Milman, 2022. "High-pressure synthesis of seven lanthanum hydrides with a significant variability of hydrogen content," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:578:y:2020:i:7793:d:10.1038_s41586-020-1955-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.