IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v576y2019i7785d10.1038_s41586-019-1797-8.html
   My bibliography  Save this article

The integrative biology of type 2 diabetes

Author

Listed:
  • Michael Roden

    (Medical Faculty, Heinrich-Heine University
    Leibniz Center for Diabetes Research at Heinrich-Heine University
    German Center for Diabetes Research, Partner Düsseldorf)

  • Gerald I. Shulman

    (Yale School of Medicine)

Abstract

Obesity and type 2 diabetes are the most frequent metabolic disorders, but their causes remain largely unclear. Insulin resistance, the common underlying abnormality, results from imbalance between energy intake and expenditure favouring nutrient-storage pathways, which evolved to maximize energy utilization and preserve adequate substrate supply to the brain. Initially, dysfunction of white adipose tissue and circulating metabolites modulate tissue communication and insulin signalling. However, when the energy imbalance is chronic, mechanisms such as inflammatory pathways accelerate these abnormalities. Here we summarize recent studies providing insights into insulin resistance and increased hepatic gluconeogenesis associated with obesity and type 2 diabetes, focusing on data from humans and relevant animal models.

Suggested Citation

  • Michael Roden & Gerald I. Shulman, 2019. "The integrative biology of type 2 diabetes," Nature, Nature, vol. 576(7785), pages 51-60, December.
  • Handle: RePEc:nat:nature:v:576:y:2019:i:7785:d:10.1038_s41586-019-1797-8
    DOI: 10.1038/s41586-019-1797-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1797-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1797-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zvonimir Bosnić & František Babič & Viera Anderková & Mario Štefanić & Thomas Wittlinger & Ljiljana Trtica Majnarić, 2023. "A Critical Appraisal of the Diagnostic and Prognostic Utility of the Anti-Inflammatory Marker IL-37 in a Clinical Setting: A Case Study of Patients with Diabetes Type 2," IJERPH, MDPI, vol. 20(4), pages 1-19, February.
    2. Shaza B. Zaghlool & Anna Halama & Nisha Stephan & Valborg Gudmundsdottir & Vilmundur Gudnason & Lori L. Jennings & Manonanthini Thangam & Emma Ahlqvist & Rayaz A. Malik & Omar M. E. Albagha & Abdul Ba, 2022. "Metabolic and proteomic signatures of type 2 diabetes subtypes in an Arab population," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Emmanouela Tsagkaraki & Sarah M. Nicoloro & Tiffany DeSouza & Javier Solivan-Rivera & Anand Desai & Lawrence M. Lifshitz & Yuefei Shen & Mark Kelly & Adilson Guilherme & Felipe Henriques & Nadia Amran, 2021. "CRISPR-enhanced human adipocyte browning as cell therapy for metabolic disease," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    4. Dongliang Lu & Anyuan He & Min Tan & Marguerite Mrad & Amal El Daibani & Donghua Hu & Xuejing Liu & Brian Kleiboeker & Tao Che & Fong-Fu Hsu & Monika Bambouskova & Clay F. Semenkovich & Irfan J. Lodhi, 2024. "Liver ACOX1 regulates levels of circulating lipids that promote metabolic health through adipose remodeling," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:576:y:2019:i:7785:d:10.1038_s41586-019-1797-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.