IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v575y2019i7784d10.1038_s41586-019-1677-2.html
   My bibliography  Save this article

Towards spike-based machine intelligence with neuromorphic computing

Author

Listed:
  • Kaushik Roy

    (Purdue University)

  • Akhilesh Jaiswal

    (Purdue University)

  • Priyadarshini Panda

    (Purdue University)

Abstract

Guided by brain-like ‘spiking’ computational frameworks, neuromorphic computing—brain-inspired computing for machine intelligence—promises to realize artificial intelligence while reducing the energy requirements of computing platforms. This interdisciplinary field began with the implementation of silicon circuits for biological neural routines, but has evolved to encompass the hardware implementation of algorithms with spike-based encoding and event-driven representations. Here we provide an overview of the developments in neuromorphic computing for both algorithms and hardware and highlight the fundamentals of learning and hardware frameworks. We discuss the main challenges and the future prospects of neuromorphic computing, with emphasis on algorithm–hardware codesign.

Suggested Citation

  • Kaushik Roy & Akhilesh Jaiswal & Priyadarshini Panda, 2019. "Towards spike-based machine intelligence with neuromorphic computing," Nature, Nature, vol. 575(7784), pages 607-617, November.
  • Handle: RePEc:nat:nature:v:575:y:2019:i:7784:d:10.1038_s41586-019-1677-2
    DOI: 10.1038/s41586-019-1677-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1677-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1677-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Qian & Qi, Saibing & Ren, Cong, 2021. "Gene essentiality prediction based on chaos game representation and spiking neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    2. Zhenjia Chen & Zhenyuan Lin & Ji Yang & Cong Chen & Di Liu & Liuting Shan & Yuanyuan Hu & Tailiang Guo & Huipeng Chen, 2024. "Cross-layer transmission realized by light-emitting memristor for constructing ultra-deep neural network with transfer learning ability," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Man Yao & Ole Richter & Guangshe Zhao & Ning Qiao & Yannan Xing & Dingheng Wang & Tianxiang Hu & Wei Fang & Tugba Demirci & Michele Marchi & Lei Deng & Tianyi Yan & Carsten Nielsen & Sadique Sheik & C, 2024. "Spike-based dynamic computing with asynchronous sensing-computing neuromorphic chip," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Rong Zhao & Zheyu Yang & Hao Zheng & Yujie Wu & Faqiang Liu & Zhenzhi Wu & Lukai Li & Feng Chen & Seng Song & Jun Zhu & Wenli Zhang & Haoyu Huang & Mingkun Xu & Kaifeng Sheng & Qianbo Yin & Jing Pei &, 2022. "A framework for the general design and computation of hybrid neural networks," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Filippo Moro & Emmanuel Hardy & Bruno Fain & Thomas Dalgaty & Paul Clémençon & Alessio Prà & Eduardo Esmanhotto & Niccolò Castellani & François Blard & François Gardien & Thomas Mesquida & François Ru, 2022. "Neuromorphic object localization using resistive memories and ultrasonic transducers," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Fanfan Li & Dingwei Li & Chuanqing Wang & Guolei Liu & Rui Wang & Huihui Ren & Yingjie Tang & Yan Wang & Yitong Chen & Kun Liang & Qi Huang & Mohamad Sawan & Min Qiu & Hong Wang & Bowen Zhu, 2024. "An artificial visual neuron with multiplexed rate and time-to-first-spike coding," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Ruomin Zhu & Sam Lilak & Alon Loeffler & Joseph Lizier & Adam Stieg & James Gimzewski & Zdenka Kuncic, 2023. "Online dynamical learning and sequence memory with neuromorphic nanowire networks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Pengshan Xie & Yunchao Xu & Jingwen Wang & Dengji Li & Yuxuan Zhang & Zixin Zeng & Boxiang Gao & Quan Quan & Bowen Li & You Meng & Weijun Wang & Yezhan Li & Yan Yan & Yi Shen & Jia Sun & Johnny C. Ho, 2024. "Birdlike broadband neuromorphic visual sensor arrays for fusion imaging," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Dong Gue Roe & Dong Hae Ho & Yoon Young Choi & Young Jin Choi & Seongchan Kim & Sae Byeok Jo & Moon Sung Kang & Jong-Hyun Ahn & Jeong Ho Cho, 2023. "Humanlike spontaneous motion coordination of robotic fingers through spatial multi-input spike signal multiplexing," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    10. Z. A. Arnon & S. Piperno & D. C. Redeker & E. Randall & A. V. Tkachenko & H. Shpaisman & O. Gang, 2024. "Acoustically shaped DNA-programmable materials," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Francesco Barchi & Luca Zanatta & Emanuele Parisi & Alessio Burrello & Davide Brunelli & Andrea Bartolini & Andrea Acquaviva, 2021. "Spiking Neural Network-Based Near-Sensor Computing for Damage Detection in Structural Health Monitoring," Future Internet, MDPI, vol. 13(8), pages 1-22, August.
    12. Choi, Woo Sik & Jang, Jun Tae & Kim, Donguk & Yang, Tae Jun & Kim, Changwook & Kim, Hyungjin & Kim, Dae Hwan, 2022. "Influence of Al2O3 layer on InGaZnO memristor crossbar array for neuromorphic applications," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    13. Pei-Yu Huang & Bi-Yi Jiang & Hong-Ji Chen & Jia-Yi Xu & Kang Wang & Cheng-Yi Zhu & Xin-Yan Hu & Dong Li & Liang Zhen & Fei-Chi Zhou & Jing-Kai Qin & Cheng-Yan Xu, 2023. "Neuro-inspired optical sensor array for high-accuracy static image recognition and dynamic trace extraction," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Takuya Isomura & Kiyoshi Kotani & Yasuhiko Jimbo & Karl J. Friston, 2023. "Experimental validation of the free-energy principle with in vitro neural networks," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    15. Jeong, Dong Geun & Park, Eunpyo & Jo, Yooyeon & Yang, Eunyeong & Noh, Gichang & Lee, Dae Kyu & Kim, Min Jee & Jeong, YeonJoo & Jang, Hyun Jae & Joe, Daniel J. & Chang, Jiwon & Kwak, Joon Young, 2024. "Grain boundary control for high-reliability HfO2-based RRAM," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    16. Wang, Huan & Li, Yan-Fu, 2023. "Bioinspired membrane learnable spiking neural network for autonomous vehicle sensors fault diagnosis under open environments," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    17. Jiaqi Liu & Jiangdong Gong & Huanhuan Wei & Yameng Li & Haixia Wu & Chengpeng Jiang & Yuelong Li & Wentao Xu, 2022. "A bioinspired flexible neuromuscular system based thermal-annealing-free perovskite with passivation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Chenhao Wang & Xinyi Xu & Xiaodong Pi & Mark D. Butala & Wen Huang & Lei Yin & Wenbing Peng & Munir Ali & Srikrishna Chanakya Bodepudi & Xvsheng Qiao & Yang Xu & Wei Sun & Deren Yang, 2022. "Neuromorphic device based on silicon nanosheets," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:575:y:2019:i:7784:d:10.1038_s41586-019-1677-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.