IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v574y2019i7780d10.1038_s41586-019-1639-8.html
   My bibliography  Save this article

Engineering orthogonal signalling pathways reveals the sparse occupancy of sequence space

Author

Listed:
  • Conor J. McClune

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Aurora Alvarez-Buylla

    (Massachusetts Institute of Technology)

  • Christopher A. Voigt

    (Massachusetts Institute of Technology)

  • Michael T. Laub

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

Abstract

Gene duplication is a common and powerful mechanism by which cells create new signalling pathways1,2, but recently duplicated proteins typically must become insulated from each other and from other paralogues to prevent unwanted crosstalk3. A similar challenge arises when new sensors or synthetic signalling pathways are engineered within cells or transferred between genomes. How easily new pathways can be introduced into cells depends on the density and distribution of paralogous pathways in the sequence space that is defined by their specificity-determining residues4,5. Here we directly investigate how crowded this sequence space is, by generating novel two-component signalling proteins in Escherichia coli using cell sorting coupled to deep sequencing to analyse large libraries designed on the basis of coevolutionary patterns. We produce 58 insulated pathways comprising functional kinase–substrate pairs that have different specificities than their parent proteins, and demonstrate that several of these new pairs are orthogonal to all 27 paralogous pathways in E. coli. Additionally, from the kinase–substrate pairs generated, we identify sets consisting of six pairs that are mutually orthogonal to each other, which considerably increases the two-component signalling capacity of E. coli. These results indicate that sequence space is not densely occupied. The relative sparsity of paralogues in sequence space suggests that new insulated pathways can arise easily during evolution, or be designed de novo. We demonstrate the latter by engineering a signalling pathway in E. coli that responds to a plant cytokinin, without crosstalk to extant pathways. Our work also demonstrates how coevolution-guided mutagenesis and the mapping of sequence space can be used to design large sets of orthogonal protein–protein interactions.

Suggested Citation

  • Conor J. McClune & Aurora Alvarez-Buylla & Christopher A. Voigt & Michael T. Laub, 2019. "Engineering orthogonal signalling pathways reveals the sparse occupancy of sequence space," Nature, Nature, vol. 574(7780), pages 702-706, October.
  • Handle: RePEc:nat:nature:v:574:y:2019:i:7780:d:10.1038_s41586-019-1639-8
    DOI: 10.1038/s41586-019-1639-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1639-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1639-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Remkes A. Scheele & Laurens H. Lindenburg & Maya Petek & Markus Schober & Kevin N. Dalby & Florian Hollfelder, 2022. "Droplet-based screening of phosphate transfer catalysis reveals how epistasis shapes MAP kinase interactions with substrates," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Ross D. Jones & Yili Qian & Katherine Ilia & Benjamin Wang & Michael T. Laub & Domitilla Del Vecchio & Ron Weiss, 2022. "Robust and tunable signal processing in mammalian cells via engineered covalent modification cycles," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Thuy N. Nguyen & Christine Ingle & Samuel Thompson & Kimberly A. Reynolds, 2024. "The genetic landscape of a metabolic interaction," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Yuanli Gao & Lei Wang & Baojun Wang, 2023. "Customizing cellular signal processing by synthetic multi-level regulatory circuits," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:574:y:2019:i:7780:d:10.1038_s41586-019-1639-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.