IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v574y2019i7778d10.1038_s41586-019-1641-1.html
   My bibliography  Save this article

Population imaging of neural activity in awake behaving mice

Author

Listed:
  • Kiryl D. Piatkevich

    (MIT
    MIT McGovern Institute for Brain Research, MIT)

  • Seth Bensussen

    (Boston University)

  • Hua-an Tseng

    (Boston University)

  • Sanaya N. Shroff

    (Boston University)

  • Violeta Gisselle Lopez-Huerta

    (Broad Institute of MIT and Harvard)

  • Demian Park

    (MIT
    MIT McGovern Institute for Brain Research, MIT)

  • Erica E. Jung

    (MIT
    University of Illinois)

  • Or A. Shemesh

    (MIT
    MIT McGovern Institute for Brain Research, MIT)

  • Christoph Straub

    (Harvard Medical School)

  • Howard J. Gritton

    (Boston University)

  • Michael F. Romano

    (Boston University)

  • Emma Costa

    (MIT)

  • Bernardo L. Sabatini

    (Harvard Medical School)

  • Zhanyan Fu

    (Broad Institute of MIT and Harvard)

  • Edward S. Boyden

    (MIT
    MIT McGovern Institute for Brain Research, MIT
    Department of Biological Engineering, MIT
    MIT Center for Neurobiological Engineering, MIT)

  • Xue Han

    (Boston University)

Abstract

A longstanding goal in neuroscience has been to image membrane voltage across a population of individual neurons in an awake, behaving mammal. Here we describe a genetically encoded fluorescent voltage indicator, SomArchon, which exhibits millisecond response times and is compatible with optogenetic control, and which increases the sensitivity, signal-to-noise ratio, and number of neurons observable several-fold over previously published fully genetically encoded reagents1–8. Under conventional one-photon microscopy, SomArchon enables the routine population analysis of around 13 neurons at once, in multiple brain regions (cortex, hippocampus, and striatum) of head-fixed, awake, behaving mice. Using SomArchon, we detected both positive and negative responses of striatal neurons during movement, as previously reported by electrophysiology but not easily detected using modern calcium imaging techniques9–11, highlighting the power of voltage imaging to reveal bidirectional modulation. We also examined how spikes relate to the subthreshold theta oscillations of individual hippocampal neurons, with SomArchon showing that the spikes of individual neurons are more phase-locked to their own subthreshold theta oscillations than to local field potential theta oscillations. Thus, SomArchon reports both spikes and subthreshold voltage dynamics in awake, behaving mice.

Suggested Citation

  • Kiryl D. Piatkevich & Seth Bensussen & Hua-an Tseng & Sanaya N. Shroff & Violeta Gisselle Lopez-Huerta & Demian Park & Erica E. Jung & Or A. Shemesh & Christoph Straub & Howard J. Gritton & Michael F., 2019. "Population imaging of neural activity in awake behaving mice," Nature, Nature, vol. 574(7778), pages 413-417, October.
  • Handle: RePEc:nat:nature:v:574:y:2019:i:7778:d:10.1038_s41586-019-1641-1
    DOI: 10.1038/s41586-019-1641-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1641-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1641-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenrui Liao & Kevin C. Gonzalez & Deborah M. Li & Catalina M. Yang & Donald Holder & Natalie E. McClain & Guofeng Zhang & Stephen W. Evans & Mariya Chavarha & Jane Simko & Christopher D. Makinson & M, 2024. "Functional architecture of intracellular oscillations in hippocampal dendrites," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Changjia Cai & Johannes Friedrich & Amrita Singh & M Hossein Eybposh & Eftychios A Pnevmatikakis & Kaspar Podgorski & Andrea Giovannucci, 2021. "VolPy: Automated and scalable analysis pipelines for voltage imaging datasets," PLOS Computational Biology, Public Library of Science, vol. 17(4), pages 1-28, April.
    3. Sanaya N. Shroff & Eric Lowet & Sudiksha Sridhar & Howard J. Gritton & Mohammed Abumuaileq & Hua-An Tseng & Cyrus Cheung & Samuel L. Zhou & Krishnakanth Kondabolu & Xue Han, 2023. "Striatal cholinergic interneuron membrane voltage tracks locomotor rhythms in mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Eric Lowet & Krishnakanth Kondabolu & Samuel Zhou & Rebecca A. Mount & Yangyang Wang & Cara R. Ravasio & Xue Han, 2022. "Deep brain stimulation creates informational lesion through membrane depolarization in mouse hippocampus," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Yuki Bando & Michael Wenzel & Rafael Yuste, 2021. "Simultaneous two-photon imaging of action potentials and subthreshold inputs in vivo," Nature Communications, Nature, vol. 12(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:574:y:2019:i:7778:d:10.1038_s41586-019-1641-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.