IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v573y2019i7774d10.1038_s41586-019-1550-3.html
   My bibliography  Save this article

Rapid expansion of Greenland’s low-permeability ice slabs

Author

Listed:
  • M. MacFerrin

    (University of Colorado)

  • H. Machguth

    (University of Fribourg
    University of Zurich)

  • D. van As

    (Geological Survey of Denmark and Greenland)

  • C. Charalampidis

    (Bavarian Academy of Sciences and Humanities)

  • C. M. Stevens

    (University of Washington)

  • A. Heilig

    (WSL Institute for Snow and Avalanche Research SLF
    Ludwig-Maximilians-University of Munich
    Alfred Wegener Institute Helmholtz-Centre for Polar and Marine Research)

  • B. Vandecrux

    (Geological Survey of Denmark and Greenland
    Technical University of Denmark)

  • P. L. Langen

    (Danish Meteorological Institute)

  • R. Mottram

    (Danish Meteorological Institute)

  • X. Fettweis

    (University of Liège)

  • M. R. van den Broeke

    (Utrecht University)

  • W. T. Pfeffer

    (University of Colorado)

  • M. S. Moussavi

    (University of Colorado
    University of Colorado)

  • W. Abdalati

    (University of Colorado)

Abstract

In recent decades, meltwater runoff has accelerated to become the dominant mechanism for mass loss in the Greenland ice sheet1–3. In Greenland’s high-elevation interior, porous snow and firn accumulate; these can absorb surface meltwater and inhibit runoff4, but this buffering effect is limited if enough water refreezes near the surface to restrict percolation5,6. However, the influence of refreezing on runoff from Greenland remains largely unquantified. Here we use firn cores, radar observations and regional climate models to show that recent increases in meltwater have resulted in the formation of metres-thick, low-permeability ‘ice slabs’ that have expanded the Greenland ice sheet’s total runoff area by 26 ± 3 per cent since 2001. Although runoff from the top of ice slabs has added less than one millimetre to global sea-level rise so far, this contribution will grow substantially as ice slabs expand inland in a warming climate. Runoff over ice slabs is set to contribute 7 to 33 millimetres and 17 to 74 millimetres to global sea-level rise by 2100 under moderate- and high-emissions scenarios, respectively—approximately double the estimated runoff from Greenland’s high-elevation interior, as predicted by surface mass balance models without ice slabs. Ice slabs will have an important role in enhancing surface meltwater feedback processes, fundamentally altering the ice sheet’s present and future hydrology.

Suggested Citation

  • M. MacFerrin & H. Machguth & D. van As & C. Charalampidis & C. M. Stevens & A. Heilig & B. Vandecrux & P. L. Langen & R. Mottram & X. Fettweis & M. R. van den Broeke & W. T. Pfeffer & M. S. Moussavi &, 2019. "Rapid expansion of Greenland’s low-permeability ice slabs," Nature, Nature, vol. 573(7774), pages 403-407, September.
  • Handle: RePEc:nat:nature:v:573:y:2019:i:7774:d:10.1038_s41586-019-1550-3
    DOI: 10.1038/s41586-019-1550-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1550-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1550-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brice Noël & Jan T. M. Lenaerts & William H. Lipscomb & Katherine Thayer-Calder & Michiel R. Broeke, 2022. "Peak refreezing in the Greenland firn layer under future warming scenarios," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Thomas Slater & Andrew Shepherd & Malcolm McMillan & Amber Leeson & Lin Gilbert & Alan Muir & Peter Kuipers Munneke & Brice Noël & Xavier Fettweis & Michiel Broeke & Kate Briggs, 2021. "Increased variability in Greenland Ice Sheet runoff from satellite observations," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Kyle S. Mattingly & Jenny V. Turton & Jonathan D. Wille & Brice Noël & Xavier Fettweis & Åsa K. Rennermalm & Thomas L. Mote, 2023. "Increasing extreme melt in northeast Greenland linked to foehn winds and atmospheric rivers," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:573:y:2019:i:7774:d:10.1038_s41586-019-1550-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.