FOXA1 mutations alter pioneering activity, differentiation and prostate cancer phenotypes
Author
Abstract
Suggested Citation
DOI: 10.1038/s41586-019-1318-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chandrani Mukhopadhyay & Chenyi Yang & Limei Xu & Deli Liu & Yu Wang & Dennis Huang & Lesa Dayal Deonarine & Joanna Cyrta & Elai Davicioni & Andrea Sboner & Brian. D. Robinson & Arul M. Chinnaiyan & M, 2021. "G3BP1 inhibits Cul3SPOP to amplify AR signaling and promote prostate cancer," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
- Zifeng Wang & Scott L. Townley & Songqi Zhang & Mingyu Liu & Muqing Li & Maryam Labaf & Susan Patalano & Kavita Venkataramani & Kellee R. Siegfried & Jill A. Macoska & Dong Han & Shuai Gao & Gail P. R, 2024. "FOXA2 rewires AP-1 for transcriptional reprogramming and lineage plasticity in prostate cancer," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
- Alexandros Armaos & François Serra & Iker Núñez-Carpintero & Ji-Heui Seo & Sylvan C. Baca & Stefano Gustincich & Alfonso Valencia & Matthew L. Freedman & Davide Cirillo & Claudia Giambartolomei & Gian, 2023. "The PENGUIN approach to reconstruct protein interactions at enhancer-promoter regions and its application to prostate cancer," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
- Jeroen Kneppers & Tesa M. Severson & Joseph C. Siefert & Pieter Schol & Stacey E. P. Joosten & Ivan Pak Lok Yu & Chia-Chi Flora Huang & Tunç Morova & Umut Berkay Altıntaş & Claudia Giambartolomei & Ji, 2022. "Extensive androgen receptor enhancer heterogeneity in primary prostate cancers underlies transcriptional diversity and metastatic potential," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
- Joshua I. Warrick & Wenhuo Hu & Hironobu Yamashita & Vonn Walter & Lauren Shuman & Jenna M. Craig & Lan L. Gellert & Mauro A. A. Castro & A. Gordon Robertson & Fengshen Kuo & Irina Ostrovnaya & Judy S, 2022. "FOXA1 repression drives lineage plasticity and immune heterogeneity in bladder cancers with squamous differentiation," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
- Ning Zhang & Luuk Harbers & Michele Simonetti & Constantin Diekmann & Quentin Verron & Enrico Berrino & Sara E. Bellomo & Gabriel M. C. Longo & Michael Ratz & Niklas Schultz & Firas Tarish & Peng Su &, 2024. "High clonal diversity and spatial genetic admixture in early prostate cancer and surrounding normal tissue," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:571:y:2019:i:7765:d:10.1038_s41586-019-1318-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.