IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v571y2019i7763d10.1038_s41586-019-1309-x.html
   My bibliography  Save this article

Hydraulic control of mammalian embryo size and cell fate

Author

Listed:
  • Chii Jou Chan

    (European Molecular Biology Laboratory)

  • Maria Costanzo

    (European Molecular Biology Laboratory)

  • Teresa Ruiz-Herrero

    (Harvard University)

  • Gregor Mönke

    (European Molecular Biology Laboratory)

  • Ryan J. Petrie

    (Drexel University)

  • Martin Bergert

    (European Molecular Biology Laboratory)

  • Alba Diz-Muñoz

    (European Molecular Biology Laboratory)

  • L. Mahadevan

    (Harvard University
    Harvard University
    Harvard University
    Harvard University)

  • Takashi Hiiragi

    (European Molecular Biology Laboratory
    Kyoto University)

Abstract

Size control is fundamental in tissue development and homeostasis1,2. Although the role of cell proliferation in these processes has been widely studied, the mechanisms that control embryo size—and how these mechanisms affect cell fate—remain unknown. Here we use the mouse blastocyst as a model to unravel a key role of fluid-filled lumen in the control of embryo size and specification of cell fate. We find that there is a twofold increase in lumenal pressure during blastocyst development, which translates into a concomitant increase in cell cortical tension and tissue stiffness of the trophectoderm that lines the lumen. Increased cortical tension leads to vinculin mechanosensing and maturation of functional tight junctions, which establishes a positive feedback loop to accommodate lumen growth. When the cortical tension reaches a critical threshold, cell–cell adhesion cannot be sustained during mitotic entry, which leads to trophectoderm rupture and blastocyst collapse. A simple theory of hydraulically gated oscillations recapitulates the observed dynamics of size oscillations, and predicts the scaling of embryo size with tissue volume. This theory further predicts that disrupted tight junctions or increased tissue stiffness lead to a smaller embryo size, which we verified by biophysical, embryological, pharmacological and genetic perturbations. Changes in lumenal pressure and size can influence the cell division pattern of the trophectoderm, and thereby affect cell allocation and fate. Our study reveals how lumenal pressure and tissue mechanics control embryo size at the tissue scale, which is coupled to cell position and fate at the cellular scale.

Suggested Citation

  • Chii Jou Chan & Maria Costanzo & Teresa Ruiz-Herrero & Gregor Mönke & Ryan J. Petrie & Martin Bergert & Alba Diz-Muñoz & L. Mahadevan & Takashi Hiiragi, 2019. "Hydraulic control of mammalian embryo size and cell fate," Nature, Nature, vol. 571(7763), pages 112-116, July.
  • Handle: RePEc:nat:nature:v:571:y:2019:i:7763:d:10.1038_s41586-019-1309-x
    DOI: 10.1038/s41586-019-1309-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1309-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1309-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. King Hang Tommy Mau & Donja Karimlou & David Barneda & Vincent Brochard & Christophe Royer & Bryony Leeke & Roshni A. Souza & Mélanie Pailles & Michelle Percharde & Shankar Srinivas & Alice Jouneau & , 2022. "Dynamic enlargement and mobilization of lipid droplets in pluripotent cells coordinate morphogenesis during mouse peri-implantation development," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Audrey Creff & Olivier Ali & Camille Bied & Vincent Bayle & Gwyneth Ingram & Benoit Landrein, 2023. "Evidence that endosperm turgor pressure both promotes and restricts seed growth and size," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Ariadna Marín-Llauradó & Sohan Kale & Adam Ouzeri & Tom Golde & Raimon Sunyer & Alejandro Torres-Sánchez & Ernest Latorre & Manuel Gómez-González & Pere Roca-Cusachs & Marino Arroyo & Xavier Trepat, 2023. "Mapping mechanical stress in curved epithelia of designed size and shape," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Daniele Kunz & Anfu Wang & Chon U Chan & Robyn H. Pritchard & Wenyu Wang & Filomena Gallo & Charles R. Bradshaw & Elisa Terenzani & Karin H. Müller & Yan Yan Shery Huang & Fengzhu Xiong, 2023. "Downregulation of extraembryonic tension controls body axis formation in avian embryos," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Mohammad Ikbal Choudhury & Yizeng Li & Panagiotis Mistriotis & Ana Carina N. Vasconcelos & Eryn E. Dixon & Jing Yang & Morgan Benson & Debonil Maity & Rebecca Walker & Leigha Martin & Fatima Koroma & , 2022. "Kidney epithelial cells are active mechano-biological fluid pumps," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Antoine Vian & Marie Pochitaloff & Shuo-Ting Yen & Sangwoo Kim & Jennifer Pollock & Yucen Liu & Ellen M. Sletten & Otger Campàs, 2023. "In situ quantification of osmotic pressure within living embryonic tissues," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Céline Dinet & Alejandro Torres-Sánchez & Roberta Lanfranco & Lorenzo Michele & Marino Arroyo & Margarita Staykova, 2023. "Patterning and dynamics of membrane adhesion under hydraulic stress," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Timo N. Kohler & Joachim Jonghe & Anna L. Ellermann & Ayaka Yanagida & Michael Herger & Erin M. Slatery & Antonia Weberling & Clara Munger & Katrin Fischer & Carla Mulas & Alex Winkel & Connor Ross & , 2023. "Plakoglobin is a mechanoresponsive regulator of naive pluripotency," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    9. Gawoon Shim & Isaac B. Breinyn & Alejandro Martínez-Calvo & Sameeksha Rao & Daniel J. Cohen, 2024. "Bioelectric stimulation controls tissue shape and size," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:571:y:2019:i:7763:d:10.1038_s41586-019-1309-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.