IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v570y2019i7761d10.1038_s41586-019-1249-5.html
   My bibliography  Save this article

Late steps in bacterial translation initiation visualized using time-resolved cryo-EM

Author

Listed:
  • Sandip Kaledhonkar

    (Columbia University)

  • Ziao Fu

    (College of Physicians and Surgeons)

  • Kelvin Caban

    (Columbia University)

  • Wen Li

    (Columbia University)

  • Bo Chen

    (Columbia University)

  • Ming Sun

    (Columbia University)

  • Ruben L. Gonzalez

    (Columbia University)

  • Joachim Frank

    (Columbia University
    Columbia University)

Abstract

The initiation of bacterial translation involves the tightly regulated joining of the 50S ribosomal subunit to an initiator transfer RNA (fMet-tRNAfMet)-containing 30S ribosomal initiation complex to form a 70S initiation complex, which subsequently matures into a 70S elongation-competent complex. Rapid and accurate formation of the 70S initiation complex is promoted by initiation factors, which must dissociate from the 30S initiation complex before the resulting 70S elongation-competent complex can begin the elongation of translation1. Although comparisons of the structures of the 30S2–5 and 70S4,6–8 initiation complexes have revealed that the ribosome, initiation factors and fMet-tRNAfMet can acquire different conformations in these complexes, the timing of conformational changes during formation of the 70S initiation complex, the structures of any intermediates formed during these rearrangements, and the contributions that these dynamics might make to the mechanism and regulation of initiation remain unknown. Moreover, the absence of a structure of the 70S elongation-competent complex formed via an initiation-factor-catalysed reaction has precluded an understanding of the rearrangements to the ribosome, initiation factors and fMet-tRNAfMet that occur during maturation of a 70S initiation complex into a 70S elongation-competent complex. Here, using time-resolved cryogenic electron microscopy9, we report the near-atomic-resolution view of how a time-ordered series of conformational changes drive and regulate subunit joining, initiation factor dissociation and fMet-tRNAfMet positioning during formation of the 70S elongation-competent complex. Our results demonstrate the power of time-resolved cryogenic electron microscopy to determine how a time-ordered series of conformational changes contribute to the mechanism and regulation of one of the most fundamental processes in biology.

Suggested Citation

  • Sandip Kaledhonkar & Ziao Fu & Kelvin Caban & Wen Li & Bo Chen & Ming Sun & Ruben L. Gonzalez & Joachim Frank, 2019. "Late steps in bacterial translation initiation visualized using time-resolved cryo-EM," Nature, Nature, vol. 570(7761), pages 400-404, June.
  • Handle: RePEc:nat:nature:v:570:y:2019:i:7761:d:10.1038_s41586-019-1249-5
    DOI: 10.1038/s41586-019-1249-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1249-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1249-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mikhail Metelev & Erik Lundin & Ivan L. Volkov & Arvid H. Gynnå & Johan Elf & Magnus Johansson, 2022. "Direct measurements of mRNA translation kinetics in living cells," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Moise Mansour & Emmanuel Giudice & Xibing Xu & Hatice Akarsu & Patricia Bordes & Valérie Guillet & Donna-Joe Bigot & Nawel Slama & Gaetano D’urso & Sophie Chat & Peter Redder & Laurent Falquet & Lione, 2022. "Substrate recognition and cryo-EM structure of the ribosome-bound TAC toxin of Mycobacterium tuberculosis," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Jonathan J. P. Peters & Tiarnan Mullarkey & Emma Hedley & Karin H. Müller & Alexandra Porter & Ali Mostaed & Lewys Jones, 2023. "Electron counting detectors in scanning transmission electron microscopy via hardware signal processing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Ritwika S. Basu & Michael B. Sherman & Matthieu G. Gagnon, 2022. "Compact IF2 allows initiator tRNA accommodation into the P site and gates the ribosome to elongation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:570:y:2019:i:7761:d:10.1038_s41586-019-1249-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.