IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v570y2019i7759d10.1038_s41586-019-1255-7.html
   My bibliography  Save this article

Freestanding crystalline oxide perovskites down to the monolayer limit

Author

Listed:
  • Dianxiang Ji

    (Nanjing University
    Nanjing University)

  • Songhua Cai

    (Nanjing University
    Nanjing University)

  • Tula R. Paudel

    (University of Nebraska–Lincoln
    University of Nebraska–Lincoln)

  • Haoying Sun

    (Nanjing University
    Nanjing University)

  • Chunchen Zhang

    (Nanjing University
    Nanjing University)

  • Lu Han

    (Nanjing University
    Nanjing University)

  • Yifan Wei

    (Nanjing University
    Nanjing University)

  • Yipeng Zang

    (Nanjing University
    Nanjing University)

  • Min Gu

    (Nanjing University
    Nanjing University)

  • Yi Zhang

    (University of California, Irvine)

  • Wenpei Gao

    (University of California, Irvine)

  • Huaixun Huyan

    (University of California, Irvine)

  • Wei Guo

    (Nanjing University
    Nanjing University)

  • Di Wu

    (Nanjing University
    Nanjing University)

  • Zhengbin Gu

    (Nanjing University
    Nanjing University)

  • Evgeny Y. Tsymbal

    (University of Nebraska–Lincoln
    University of Nebraska–Lincoln)

  • Peng Wang

    (Nanjing University
    Nanjing University)

  • Yuefeng Nie

    (Nanjing University
    Nanjing University)

  • Xiaoqing Pan

    (Nanjing University
    Nanjing University
    University of California, Irvine
    University of California, Irvine)

Abstract

Two-dimensional (2D) materials such as graphene and transition-metal dichalcogenides reveal the electronic phases that emerge when a bulk crystal is reduced to a monolayer1–4. Transition-metal oxide perovskites host a variety of correlated electronic phases5–12, so similar behaviour in monolayer materials based on transition-metal oxide perovskites would open the door to a rich spectrum of exotic 2D correlated phases that have not yet been explored. Here we report the fabrication of freestanding perovskite films with high crystalline quality almost down to a single unit cell. Using a recently developed method based on water-soluble Sr3Al2O6 as the sacrificial buffer layer13,14 we synthesize freestanding SrTiO3 and BiFeO3 ultrathin films by reactive molecular beam epitaxy and transfer them to diverse substrates, in particular crystalline silicon wafers and holey carbon films. We find that freestanding BiFeO3 films exhibit unexpected and giant tetragonality and polarization when approaching the 2D limit. Our results demonstrate the absence of a critical thickness for stabilizing the crystalline order in the freestanding ultrathin oxide films. The ability to synthesize and transfer crystalline freestanding perovskite films without any thickness limitation onto any desired substrate creates opportunities for research into 2D correlated phases and interfacial phenomena that have not previously been technically possible.

Suggested Citation

  • Dianxiang Ji & Songhua Cai & Tula R. Paudel & Haoying Sun & Chunchen Zhang & Lu Han & Yifan Wei & Yipeng Zang & Min Gu & Yi Zhang & Wenpei Gao & Huaixun Huyan & Wei Guo & Di Wu & Zhengbin Gu & Evgeny , 2019. "Freestanding crystalline oxide perovskites down to the monolayer limit," Nature, Nature, vol. 570(7759), pages 87-90, June.
  • Handle: RePEc:nat:nature:v:570:y:2019:i:7759:d:10.1038_s41586-019-1255-7
    DOI: 10.1038/s41586-019-1255-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1255-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1255-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng-Hui Gong & Yun-Long Tang & Yu-Jia Wang & Yu-Ting Chen & Bo Wu & Li-Xin Yang & Yin-Lian Zhu & Xiu-Liang Ma, 2023. "Absence of critical thickness for polar skyrmions with breaking the Kittel’s law," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Shuai Xu & Jiesu Wang & Pan Chen & Kuijuan Jin & Cheng Ma & Shiyao Wu & Erjia Guo & Chen Ge & Can Wang & Xiulai Xu & Hongbao Yao & Jingyi Wang & Donggang Xie & Xinyan Wang & Kai Chang & Xuedong Bai & , 2023. "Magnetoelectric coupling in multiferroics probed by optical second harmonic generation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Yixi Zhou & Adrien Waelchli & Margherita Boselli & Iris Crassee & Adrien Bercher & Weiwei Luo & Jiahua Duan & J.L.M. Mechelen & Dirk Marel & Jérémie Teyssier & Carl Willem Rischau & Lukas Korosec & St, 2023. "Thermal and electrostatic tuning of surface phonon-polaritons in LaAlO3/SrTiO3 heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Yufan Shen & Kousuke Ooe & Xueyou Yuan & Tomoaki Yamada & Shunsuke Kobayashi & Mitsutaka Haruta & Daisuke Kan & Yuichi Shimakawa, 2024. "Ferroelectric freestanding hafnia membranes with metastable rhombohedral structure down to 1-nm-thick," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Zijing Zhao & Zhi Fang & Xiaocang Han & Shiqi Yang & Cong Zhou & Yi Zeng & Biao Zhang & Wei Li & Zhan Wang & Ying Zhang & Jian Zhou & Jiadong Zhou & Yu Ye & Xinmei Hou & Xiaoxu Zhao & Song Gao & Yangl, 2023. "A general thermodynamics-triggered competitive growth model to guide the synthesis of two-dimensional nonlayered materials," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Byungmin Sohn & Jeong Rae Kim & Choong H. Kim & Sangmin Lee & Sungsoo Hahn & Younsik Kim & Soonsang Huh & Donghan Kim & Youngdo Kim & Wonshik Kyung & Minsoo Kim & Miyoung Kim & Tae Won Noh & Changyoun, 2021. "Observation of metallic electronic structure in a single-atomic-layer oxide," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    7. Chenhang Xu & Cheng Jin & Zijing Chen & Qi Lu & Yun Cheng & Bo Zhang & Fengfeng Qi & Jiajun Chen & Xunqing Yin & Guohua Wang & Dao Xiang & Dong Qian, 2023. "Transient dynamics of the phase transition in VO2 revealed by mega-electron-volt ultrafast electron diffraction," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Ruijuan Xu & Iris Crassee & Hans A. Bechtel & Yixi Zhou & Adrien Bercher & Lukas Korosec & Carl Willem Rischau & Jérémie Teyssier & Kevin J. Crust & Yonghun Lee & Stephanie N. Gilbert Corder & Jiarui , 2024. "Highly confined epsilon-near-zero and surface phonon polaritons in SrTiO3 membranes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Donghoon Kim & Minsoo Kim & Steffen Reidt & Hyeon Han & Ali Baghizadeh & Peng Zeng & Hongsoo Choi & Josep Puigmartí-Luis & Morgan Trassin & Bradley J. Nelson & Xiang-Zhong Chen & Salvador Pané, 2023. "Shape-memory effect in twisted ferroic nanocomposites," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    10. Ruiqing Cheng & Lei Yin & Yao Wen & Baoxing Zhai & Yuzheng Guo & Zhaofu Zhang & Weitu Liao & Wenqi Xiong & Hao Wang & Shengjun Yuan & Jian Jiang & Chuansheng Liu & Jun He, 2022. "Ultrathin ferrite nanosheets for room-temperature two-dimensional magnetic semiconductors," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Jinlei Zhang & Jiayong Zhang & Yaping Qi & Shuainan Gong & Hang Xu & Zhenqi Liu & Ran Zhang & Mohammad A. Sadi & Demid Sychev & Run Zhao & Hongbin Yang & Zhenping Wu & Dapeng Cui & Lin Wang & Chunlan , 2024. "Room-temperature ferroelectric, piezoelectric and resistive switching behaviors of single-element Te nanowires," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Songhua Cai & Yingzhuo Lun & Dianxiang Ji & Peng Lv & Lu Han & Changqing Guo & Yipeng Zang & Si Gao & Yifan Wei & Min Gu & Chunchen Zhang & Zhengbin Gu & Xueyun Wang & Christopher Addiego & Daining Fa, 2022. "Enhanced polarization and abnormal flexural deformation in bent freestanding perovskite oxides," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Yueyang Jia & Qianqian Yang & Yue-Wen Fang & Yue Lu & Maosong Xie & Jianyong Wei & Jianjun Tian & Linxing Zhang & Rui Yang, 2024. "Giant tunnelling electroresistance in atomic-scale ferroelectric tunnel junctions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Yunting Guo & Bin Peng & Guangming Lu & Guohua Dong & Guannan Yang & Bohan Chen & Ruibin Qiu & Haixia Liu & Butong Zhang & Yufei Yao & Yanan Zhao & Suzhi Li & Xiangdong Ding & Jun Sun & Ming Liu, 2024. "Remarkable flexibility in freestanding single-crystalline antiferroelectric PbZrO3 membranes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Qiwu Shi & Eric Parsonnet & Xiaoxing Cheng & Natalya Fedorova & Ren-Ci Peng & Abel Fernandez & Alexander Qualls & Xiaoxi Huang & Xue Chang & Hongrui Zhang & David Pesquera & Sujit Das & Dmitri Nikonov, 2022. "The role of lattice dynamics in ferroelectric switching," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:570:y:2019:i:7759:d:10.1038_s41586-019-1255-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.