IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v569y2019i7758d10.1038_s41586-019-1240-1.html
   My bibliography  Save this article

Asia’s shrinking glaciers protect large populations from drought stress

Author

Listed:
  • Hamish D. Pritchard

    (British Antarctic Survey)

Abstract

About 800 million people depend in part on meltwater from the thousands of glaciers in the high mountains of Asia. Water stress makes this region vulnerable to drought, but glaciers are a uniquely drought-resilient source of water. Here I show that seasonal glacier meltwater is equivalent to the basic needs of 221 ± 59 million people, or most of the annual municipal and industrial needs of Pakistan, Afghanistan, Tajikistan, Turkmenistan, Uzbekistan and Kyrgyzstan. During drought summers, meltwater dominates water inputs to the upper Indus, Aral and Chu/Issyk-Kul river basins. This reduces the risk of social instability, conflict and sudden migrations triggered by water scarcity, which is already associated with the large, rapidly growing populations and hydro-economies of these basins. Regional meltwater production is, however, unsustainably high—at 1.6 times the balance rate—and is expected to increase in future decades before ultimately declining. These results update and reinforce a previous publication in Nature on this topic, which was retracted after an inadvertent error was discovered.

Suggested Citation

  • Hamish D. Pritchard, 2019. "Asia’s shrinking glaciers protect large populations from drought stress," Nature, Nature, vol. 569(7758), pages 649-654, May.
  • Handle: RePEc:nat:nature:v:569:y:2019:i:7758:d:10.1038_s41586-019-1240-1
    DOI: 10.1038/s41586-019-1240-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1240-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1240-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kairui Guo & Yong Huang & Dan Chen, 2022. "Analysis of the Expansion Characteristics of Rural Settlements Based on Scale Growth Function in Himalayan Region," Land, MDPI, vol. 11(3), pages 1-17, March.
    2. Ekaterina P. Rets & Ivan N. Durmanov & Maria B. Kireeva & Andrew M. Smirnov & Viktor V. Popovnin, 2020. "Past ‘peak water’ in the North Caucasus: deglaciation drives a reduction in glacial runoff impacting summer river runoff and peak discharges," Climatic Change, Springer, vol. 163(4), pages 2135-2151, December.
    3. Muhammad Shafeeque & Abid Sarwar & Abdul Basit & Abdelmoneim Zakaria Mohamed & Muhammad Waseem Rasheed & Muhammad Usman Khan & Noman Ali Buttar & Naeem Saddique & Mohammad Irfan Asim & Rehan Mehmood S, 2022. "Quantifying the Impact of the Billion Tree Afforestation Project (BTAP) on the Water Yield and Sediment Load in the Tarbela Reservoir of Pakistan Using the SWAT Model," Land, MDPI, vol. 11(10), pages 1-20, September.
    4. Bo Su & Cunde Xiao & Deliang Chen & Dahe Qin & Yongjian Ding, 2019. "Cryosphere Services and Human Well-Being," Sustainability, MDPI, vol. 11(16), pages 1-23, August.
    5. Jinglin Zhang & Wei Zhang & Shiwei Liu & Weiming Kong & Wei Zhang, 2022. "Cryosphere Services to Advance the National SDG Priorities in Himalaya-Karakoram Region," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
    6. Xiaowei Lyu & Yong Zhang & Huanhuan Wang & Xin Wang, 2024. "Mass Balance of Maritime Glaciers in the Southeastern Tibetan Plateau during Recent Decades," Sustainability, MDPI, vol. 16(16), pages 1-23, August.
    7. Muhammad Fraz Ismail & Bibi S. Naz & Michel Wortmann & Markus Disse & Laura C. Bowling & Wolfgang Bogacki, 2020. "Comparison of two model calibration approaches and their influence on future projections under climate change in the Upper Indus Basin," Climatic Change, Springer, vol. 163(3), pages 1227-1246, December.
    8. Zhirong Chen & Binghua Gong & Jiayi Jiang & Zhifeng Liu & Kelong Chen, 2021. "Dynamics of the Urban Water Footprint on the Tibetan Plateau: A Case Study of Xining, China," IJERPH, MDPI, vol. 18(9), pages 1-15, April.
    9. Wanlu Liu & Lulu Liu & Jiangbo Gao, 2020. "Adapting to climate change: gaps and strategies for Central Asia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(8), pages 1439-1459, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:569:y:2019:i:7758:d:10.1038_s41586-019-1240-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.