IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v567y2019i7747d10.1038_s41586-019-0932-x.html
   My bibliography  Save this article

Thermodynamic signatures of quantum criticality in cuprate superconductors

Author

Listed:
  • B. Michon

    (Institut Néel, Université Grenoble Alpes
    Université de Sherbrooke
    CNRS, Institut Néel)

  • C. Girod

    (Institut Néel, Université Grenoble Alpes
    Université de Sherbrooke
    CNRS, Institut Néel)

  • S. Badoux

    (Université de Sherbrooke)

  • J. Kačmarčík

    (Slovak Academy of Sciences)

  • Q. Ma

    (McMaster University)

  • M. Dragomir

    (McMaster University)

  • H. A. Dabkowska

    (McMaster University)

  • B. D. Gaulin

    (McMaster University
    McMaster University
    Canadian Institute for Advanced Research)

  • J.-S. Zhou

    (University of Texas at Austin)

  • S. Pyon

    (University of Tokyo)

  • T. Takayama

    (University of Tokyo)

  • H. Takagi

    (University of Tokyo)

  • S. Verret

    (Université de Sherbrooke)

  • N. Doiron-Leyraud

    (Université de Sherbrooke)

  • C. Marcenat

    (Université Grenoble Alpes, CEA, INAC, PHELIQS, LATEQS)

  • L. Taillefer

    (Université de Sherbrooke
    Canadian Institute for Advanced Research)

  • T. Klein

    (Institut Néel, Université Grenoble Alpes
    CNRS, Institut Néel)

Abstract

The three central phenomena of cuprate (copper oxide) superconductors are linked by a common doping level p*—at which the enigmatic pseudogap phase ends and the resistivity exhibits an anomalous linear dependence on temperature, and around which the superconducting phase forms a dome-shaped area in the phase diagram1. However, the fundamental nature of p* remains unclear, in particular regarding whether it marks a true quantum phase transition. Here we measure the specific heat C of the cuprates Eu-LSCO and Nd-LSCO at low temperature in magnetic fields large enough to suppress superconductivity, over a wide doping range2 that includes p*. As a function of doping, we find that Cel/T is strongly peaked at p* (where Cel is the electronic contribution to C) and exhibits a log(1/T) dependence as temperature T tends to zero. These are the classic thermodynamic signatures of a quantum critical point3–5, as observed in heavy-fermion6 and iron-based7 superconductors at the point where their antiferromagnetic phase comes to an end. We conclude that the pseudogap phase of cuprates ends at a quantum critical point, the associated fluctuations of which are probably involved in d-wave pairing and the anomalous scattering of charge carriers.

Suggested Citation

  • B. Michon & C. Girod & S. Badoux & J. Kačmarčík & Q. Ma & M. Dragomir & H. A. Dabkowska & B. D. Gaulin & J.-S. Zhou & S. Pyon & T. Takayama & H. Takagi & S. Verret & N. Doiron-Leyraud & C. Marcenat & , 2019. "Thermodynamic signatures of quantum criticality in cuprate superconductors," Nature, Nature, vol. 567(7747), pages 218-222, March.
  • Handle: RePEc:nat:nature:v:567:y:2019:i:7747:d:10.1038_s41586-019-0932-x
    DOI: 10.1038/s41586-019-0932-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-0932-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-0932-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sami Dzsaber & Diego A. Zocco & Alix McCollam & Franziska Weickert & Ross McDonald & Mathieu Taupin & Gaku Eguchi & Xinlin Yan & Andrey Prokofiev & Lucas M. K. Tang & Bryan Vlaar & Laurel E. Winter & , 2022. "Control of electronic topology in a strongly correlated electron system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Bastien Michon & Christophe Berthod & Carl Willem Rischau & Amirreza Ataei & Lu Chen & Seiki Komiya & Shimpei Ono & Louis Taillefer & Dirk Marel & Antoine Georges, 2023. "Reconciling scaling of the optical conductivity of cuprate superconductors with Planckian resistivity and specific heat," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. J. C. Palmstrom & P. Walmsley & J. A. W. Straquadine & M. E. Sorensen & S. T. Hannahs & D. H. Burns & I. R. Fisher, 2022. "Comparison of temperature and doping dependence of elastoresistivity near a putative nematic quantum critical point," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    4. Zhuo Yang & Benoît Fauqué & Toshihiro Nomura & Takashi Shitaokoshi & Sunghoon Kim & Debanjan Chowdhury & Zuzana Pribulová & Jozef Kačmarčík & Alexandre Pourret & Georg Knebel & Dai Aoki & Thierry Klei, 2023. "Unveiling the double-peak structure of quantum oscillations in the specific heat," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:567:y:2019:i:7747:d:10.1038_s41586-019-0932-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.