IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v566y2019i7742d10.1038_s41586-019-0880-5.html
   My bibliography  Save this article

Rubisco condensate formation by CcmM in β-carboxysome biogenesis

Author

Listed:
  • H. Wang

    (Max Planck Institute of Biochemistry)

  • X. Yan

    (Max Planck Institute of Biochemistry)

  • H. Aigner

    (Max Planck Institute of Biochemistry
    KWS SAAT SE)

  • A. Bracher

    (Max Planck Institute of Biochemistry)

  • N. D. Nguyen

    (Research School of Biology, The Australian National University)

  • W. Y. Hee

    (Research School of Biology, The Australian National University)

  • B. M. Long

    (Research School of Biology, The Australian National University)

  • G. D. Price

    (Research School of Biology, The Australian National University)

  • F. U. Hartl

    (Max Planck Institute of Biochemistry)

  • M. Hayer-Hartl

    (Max Planck Institute of Biochemistry)

Abstract

Cells use compartmentalization of enzymes as a strategy to regulate metabolic pathways and increase their efficiency1. The α- and β-carboxysomes of cyanobacteria contain ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)—a complex of eight large (RbcL) and eight small (RbcS) subunits—and carbonic anhydrase2–4. As HCO3− can diffuse through the proteinaceous carboxysome shell but CO2 cannot5, carbonic anhydrase generates high concentrations of CO2 for carbon fixation by Rubisco6. The shell also prevents access to reducing agents, generating an oxidizing environment7–9. The formation of β-carboxysomes involves the aggregation of Rubisco by the protein CcmM10, which exists in two forms: full-length CcmM (M58 in Synechococcus elongatus PCC7942), which contains a carbonic anhydrase-like domain8 followed by three Rubisco small subunit-like (SSUL) modules connected by flexible linkers; and M35, which lacks the carbonic anhydrase-like domain11. It has long been speculated that the SSUL modules interact with Rubisco by replacing RbcS2–4. Here we have reconstituted the Rubisco–CcmM complex and solved its structure. Contrary to expectation, the SSUL modules do not replace RbcS, but bind close to the equatorial region of Rubisco between RbcL dimers, linking Rubisco molecules and inducing phase separation into a liquid-like matrix. Disulfide bond formation in SSUL increases the network flexibility and is required for carboxysome function in vivo. Notably, the formation of the liquid-like condensate of Rubisco is mediated by dynamic interactions with the SSUL domains, rather than by low-complexity sequences, which typically mediate liquid–liquid phase separation in eukaryotes12,13. Indeed, within the pyrenoids of eukaryotic algae, the functional homologues of carboxysomes, Rubisco adopts a liquid-like state by interacting with the intrinsically disordered protein EPYC114. Understanding carboxysome biogenesis will be important for efforts to engineer CO2-concentrating mechanisms in plants15–19.

Suggested Citation

  • H. Wang & X. Yan & H. Aigner & A. Bracher & N. D. Nguyen & W. Y. Hee & B. M. Long & G. D. Price & F. U. Hartl & M. Hayer-Hartl, 2019. "Rubisco condensate formation by CcmM in β-carboxysome biogenesis," Nature, Nature, vol. 566(7742), pages 131-135, February.
  • Handle: RePEc:nat:nature:v:566:y:2019:i:7742:d:10.1038_s41586-019-0880-5
    DOI: 10.1038/s41586-019-0880-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-0880-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-0880-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lauren Ann Metskas & Davi Ortega & Luke M. Oltrogge & Cecilia Blikstad & Derik R. Lovejoy & Thomas G. Laughlin & David F. Savage & Grant J. Jensen, 2022. "Rubisco forms a lattice inside alpha-carboxysomes," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Mengru Yang & Nicolas Wenner & Gregory F. Dykes & Yan Li & Xiaojun Zhu & Yaqi Sun & Fang Huang & Jay C. D. Hinton & Lu-Ning Liu, 2022. "Biogenesis of a bacterial metabolosome for propanediol utilization," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Tao Ni & Yaqi Sun & Will Burn & Monsour M. J. Al-Hazeem & Yanan Zhu & Xiulian Yu & Lu-Ning Liu & Peijun Zhang, 2022. "Structure and assembly of cargo Rubisco in two native α-carboxysomes," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:566:y:2019:i:7742:d:10.1038_s41586-019-0880-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.