Human blood vessel organoids as a model of diabetic vasculopathy
Author
Abstract
Suggested Citation
DOI: 10.1038/s41586-018-0858-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Clément Quintard & Emily Tubbs & Gustav Jonsson & Jie Jiao & Jun Wang & Nicolas Werschler & Camille Laporte & Amandine Pitaval & Thierno-Sidy Bah & Gideon Pomeranz & Caroline Bissardon & Joris Kaal & , 2024. "A microfluidic platform integrating functional vascularized organoids-on-chip," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Myungji Kim & Seungyeon Cho & Dong Gyu Hwang & In Kyong Shim & Song Cheol Kim & Jiwon Jang & Jinah Jang, 2025. "Bioprinting of bespoke islet-specific niches to promote maturation of stem cell-derived islets," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
- Sara G. Romeo & Ilaria Secco & Edoardo Schneider & Christina M. Reumiller & Celio X. C. Santos & Anna Zoccarato & Vishal Musale & Aman Pooni & Xiaoke Yin & Konstantinos Theofilatos & Silvia Cellone Tr, 2023. "Human blood vessel organoids reveal a critical role for CTGF in maintaining microvascular integrity," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
- Alexandru Achim & Agata Stanek & Călin Homorodean & Mihail Spinu & Horea Laurenţiu Onea & Leontin Lazăr & Mădălin Marc & Zoltán Ruzsa & Dan Mircea Olinic, 2022. "Approaches to Peripheral Artery Disease in Diabetes: Are There Any Differences?," IJERPH, MDPI, vol. 19(16), pages 1-11, August.
- Thomas L. Maurissen & Alena J. Spielmann & Gabriella Schellenberg & Marc Bickle & Jose Ricardo Vieira & Si Ying Lai & Georgios Pavlou & Sascha Fauser & Peter D. Westenskow & Roger D. Kamm & Héloïse Ra, 2024. "Modeling early pathophysiological phenotypes of diabetic retinopathy in a human inner blood-retinal barrier-on-a-chip," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Vanessa Monteil & Hyesoo Kwon & Lijo John & Cristiano Salata & Gustav Jonsson & Sabine U. Vorrink & Sofia Appelberg & Sonia Youhanna & Matheus Dyczynski & Alexandra Leopoldi & Nicole Leeb & Jennifer V, 2023. "Identification of CCZ1 as an essential lysosomal trafficking regulator in Marburg and Ebola virus infections," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:565:y:2019:i:7740:d:10.1038_s41586-018-0858-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.