IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v565y2019i7737d10.1038_s41586-018-0785-8.html
   My bibliography  Save this article

A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds

Author

Listed:
  • Imtiyaz Khanday

    (University of California
    Innovative Genomics Institute)

  • Debra Skinner

    (University of California)

  • Bing Yang

    (Iowa State University)

  • Raphael Mercier

    (Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay)

  • Venkatesan Sundaresan

    (University of California
    Innovative Genomics Institute
    University of California)

Abstract

The molecular pathways that trigger the initiation of embryogenesis after fertilization in flowering plants, and prevent its occurrence without fertilization, are not well understood1. Here we show in rice (Oryza sativa) that BABY BOOM1 (BBM1), a member of the AP2 family2 of transcription factors that is expressed in sperm cells, has a key role in this process. Ectopic expression of BBM1 in the egg cell is sufficient for parthenogenesis, which indicates that a single wild-type gene can bypass the fertilization checkpoint in the female gamete. Zygotic expression of BBM1 is initially specific to the male allele but is subsequently biparental, and this is consistent with its observed auto-activation. Triple knockout of the genes BBM1, BBM2 and BBM3 causes embryo arrest and abortion, which are fully rescued by male-transmitted BBM1. These findings suggest that the requirement for fertilization in embryogenesis is mediated by male-genome transmission of pluripotency factors. When genome editing to substitute mitosis for meiosis (MiMe)3,4 is combined with the expression of BBM1 in the egg cell, clonal progeny can be obtained that retain genome-wide parental heterozygosity. The synthetic asexual-propagation trait is heritable through multiple generations of clones. Hybrid crops provide increased yields that cannot be maintained by their progeny owing to genetic segregation. This work establishes the feasibility of asexual reproduction in crops, and could enable the maintenance of hybrids clonally through seed propagation5,6.

Suggested Citation

  • Imtiyaz Khanday & Debra Skinner & Bing Yang & Raphael Mercier & Venkatesan Sundaresan, 2019. "A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds," Nature, Nature, vol. 565(7737), pages 91-95, January.
  • Handle: RePEc:nat:nature:v:565:y:2019:i:7737:d:10.1038_s41586-018-0785-8
    DOI: 10.1038/s41586-018-0785-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0785-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0785-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alemu, Solomon & Kosmowski, Frederic & Stevenson, James R. & Mallia, Paola & Taye, Lemi & Macours, Karen, 2024. "Studying inclusive innovation with the right data: An empirical illustration from Ethiopia," Agricultural Systems, Elsevier, vol. 219(C).
    2. Aurore Vernet & Donaldo Meynard & Qichao Lian & Delphine Mieulet & Olivier Gibert & Matilda Bissah & Ronan Rivallan & Daphné Autran & Olivier Leblanc & Anne Cécile Meunier & Julien Frouin & James Tail, 2022. "High-frequency synthetic apomixis in hybrid rice," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:565:y:2019:i:7737:d:10.1038_s41586-018-0785-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.