IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v561y2018i7724d10.1038_s41586-018-0538-8.html
   My bibliography  Save this article

mRNA circularization by METTL3–eIF3h enhances translation and promotes oncogenesis

Author

Listed:
  • Junho Choe

    (Boston Children’s Hospital
    Harvard Medical School)

  • Shuibin Lin

    (Boston Children’s Hospital
    Harvard Medical School
    The First Affiliated Hospital, Sun Yat-sen University)

  • Wencai Zhang

    (Beth Israel Deaconess Medical Center)

  • Qi Liu

    (Boston Children’s Hospital
    Harvard Medical School)

  • Longfei Wang

    (Harvard Medical School)

  • Julia Ramirez-Moya

    (Boston Children’s Hospital
    Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM))

  • Peng Du

    (Boston Children’s Hospital
    Harvard Medical School)

  • Wantae Kim

    (Harvard School of Dental Medicine
    Biomedical Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))

  • Shaojun Tang

    (Georgetown University Medical Center
    Lombardi Comprehensive Cancer Center, Georgetown University)

  • Piotr Sliz

    (Harvard Medical School)

  • Pilar Santisteban

    (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM))

  • Rani E. George

    (Dana-Farber Cancer Institute
    Harvard Medical School)

  • William G. Richards

    (Brigham and Women’s Hospital)

  • Kwok-Kin Wong

    (NYU School of Medicine)

  • Nicolas Locker

    (University of Surrey)

  • Frank J. Slack

    (Beth Israel Deaconess Medical Center
    Harvard Initiative for RNA Medicine
    Harvard Stem Cell Institute)

  • Richard I. Gregory

    (Boston Children’s Hospital
    Harvard Medical School
    Harvard Medical School
    Harvard Initiative for RNA Medicine)

Abstract

N6-methyladenosine (m6A) modification of mRNA is emerging as an important regulator of gene expression that affects different developmental and biological processes, and altered m6A homeostasis is linked to cancer1–5. m6A modification is catalysed by METTL3 and enriched in the 3′ untranslated region of a large subset of mRNAs at sites close to the stop codon5. METTL3 can promote translation but the mechanism and relevance of this process remain unknown1. Here we show that METTL3 enhances translation only when tethered to reporter mRNA at sites close to the stop codon, supporting a mechanism of mRNA looping for ribosome recycling and translational control. Electron microscopy reveals the topology of individual polyribosomes with single METTL3 foci in close proximity to 5′ cap-binding proteins. We identify a direct physical and functional interaction between METTL3 and the eukaryotic translation initiation factor 3 subunit h (eIF3h). METTL3 promotes translation of a large subset of oncogenic mRNAs—including bromodomain-containing protein 4—that is also m6A-modified in human primary lung tumours. The METTL3–eIF3h interaction is required for enhanced translation, formation of densely packed polyribosomes and oncogenic transformation. METTL3 depletion inhibits tumorigenicity and sensitizes lung cancer cells to BRD4 inhibition. These findings uncover a mechanism of translation control that is based on mRNA looping and identify METTL3–eIF3h as a potential therapeutic target for patients with cancer.

Suggested Citation

  • Junho Choe & Shuibin Lin & Wencai Zhang & Qi Liu & Longfei Wang & Julia Ramirez-Moya & Peng Du & Wantae Kim & Shaojun Tang & Piotr Sliz & Pilar Santisteban & Rani E. George & William G. Richards & Kwo, 2018. "mRNA circularization by METTL3–eIF3h enhances translation and promotes oncogenesis," Nature, Nature, vol. 561(7724), pages 556-560, September.
  • Handle: RePEc:nat:nature:v:561:y:2018:i:7724:d:10.1038_s41586-018-0538-8
    DOI: 10.1038/s41586-018-0538-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0538-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0538-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuanpei Li & Xiaoniu He & Xiao Lu & Zhicheng Gong & Qing Li & Lei Zhang & Ronghui Yang & Chengyi Wu & Jialiang Huang & Jiancheng Ding & Yaohui He & Wen Liu & Ceshi Chen & Bin Cao & Dawang Zhou & Yufen, 2022. "METTL3 acetylation impedes cancer metastasis via fine-tuning its nuclear and cytosolic functions," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    2. Qiaoqiao Zhang & Kai Deng & Mengyou Liu & Shengye Yang & Wei Xu & Tong Feng & Minwen Jie & Zhiming Liu & Xiao Sheng & Haiyang Chen & Hao Jiang, 2023. "Phase separation of BuGZ regulates gut regeneration and aging through interaction with m6A regulators," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Huilin Jin & Xiaoling Huang & Qihao Pan & Ning Ma & Xiaoshan Xie & Yue Wei & Fenghai Yu & Weijie Wen & Boyu Zhang & Peng Zhang & Xijie Chen & Jie Wang & Ran-yi Liu & Junzhong Lin & Xiangqi Meng & Mong, 2024. "The EIF3H-HAX1 axis increases RAF-MEK-ERK signaling activity to promote colorectal cancer progression," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Xin Yang & Robinson Triboulet & Qi Liu & Erdem Sendinc & Richard I. Gregory, 2022. "Exon junction complex shapes the m6A epitranscriptome," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Hui Han & Chunlong Yang & Jieyi Ma & Shuishen Zhang & Siyi Zheng & Rongsong Ling & Kaiyu Sun & Siyao Guo & Boxuan Huang & Yu Liang & Lu Wang & Shuang Chen & Zhaoyu Wang & Wei Wei & Ying Huang & Hao Pe, 2022. "N7-methylguanosine tRNA modification promotes esophageal squamous cell carcinoma tumorigenesis via the RPTOR/ULK1/autophagy axis," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. WeiChao Hao & MeiJuan Dian & Ying Zhou & QiuLing Zhong & WenQian Pang & ZiJian Li & YaYan Zhao & JiaCheng Ma & XiaoLin Lin & RenRu Luo & YongLong Li & JunShuang Jia & HongFen Shen & ShiHao Huang & Gua, 2022. "Autophagy induction promoted by m6A reader YTHDF3 through translation upregulation of FOXO3 mRNA," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    7. Xinzhi Li & Bingchuan Yuan & Min Lu & Yuqin Wang & Na Ding & Chunhong Liu & Ming Gao & Zhicheng Yao & Shiyan Zhang & Yujun Zhao & Liwei Xie & Zheng Chen, 2021. "The methyltransferase METTL3 negatively regulates nonalcoholic steatohepatitis (NASH) progression," Nature Communications, Nature, vol. 12(1), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:561:y:2018:i:7724:d:10.1038_s41586-018-0538-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.