IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v561y2018i7724d10.1038_s41586-018-0527-y.html
   My bibliography  Save this article

Sensation, movement and learning in the absence of barrel cortex

Author

Listed:
  • Y. Kate Hong

    (Mortimer Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Science, Columbia University)

  • Clay O. Lacefield

    (Mortimer Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Science, Columbia University)

  • Chris C. Rodgers

    (Mortimer Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Science, Columbia University)

  • Randy M. Bruno

    (Mortimer Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Science, Columbia University)

Abstract

For many of our senses, the role of the cerebral cortex in detecting stimuli is controversial1–17. Here we examine the effects of both acute and chronic inactivation of the primary somatosensory cortex in mice trained to move their large facial whiskers to detect an object by touch and respond with a lever to obtain a water reward. Using transgenic mice, we expressed inhibitory opsins in excitatory cortical neurons. Transient optogenetic inactivation of the primary somatosensory cortex, as well as permanent lesions, initially produced both movement and sensory deficits that impaired detection behaviour, demonstrating the link between sensory and motor systems during active sensing. Unexpectedly, lesioned mice had recovered full behavioural capabilities by the subsequent session. This rapid recovery was experience-dependent, and early re-exposure to the task after lesioning facilitated recovery. Furthermore, ablation of the primary somatosensory cortex before learning did not affect task acquisition. This combined optogenetic and lesion approach suggests that manipulations of the sensory cortex may be only temporarily disruptive to other brain structures that are themselves capable of coordinating multiple, arbitrary movements with sensation. Thus, the somatosensory cortex may be dispensable for active detection of objects in the environment.

Suggested Citation

  • Y. Kate Hong & Clay O. Lacefield & Chris C. Rodgers & Randy M. Bruno, 2018. "Sensation, movement and learning in the absence of barrel cortex," Nature, Nature, vol. 561(7724), pages 542-546, September.
  • Handle: RePEc:nat:nature:v:561:y:2018:i:7724:d:10.1038_s41586-018-0527-y
    DOI: 10.1038/s41586-018-0527-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0527-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0527-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Audrey J Sederberg & Aurélie Pala & He J V Zheng & Biyu J He & Garrett B Stanley, 2019. "State-aware detection of sensory stimuli in the cortex of the awake mouse," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-24, May.
    2. Lloyd E. Russell & Mehmet Fişek & Zidan Yang & Lynn Pei Tan & Adam M. Packer & Henry W. P. Dalgleish & Selmaan N. Chettih & Christopher D. Harvey & Michael Häusser, 2024. "The influence of cortical activity on perception depends on behavioral state and sensory context," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Sebastian Reinartz & Arash Fassihi & Maria Ravera & Luciano Paz & Francesca Pulecchi & Marco Gigante & Mathew E. Diamond, 2024. "Direct contribution of the sensory cortex to the judgment of stimulus duration," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Pierre-Marie Gardères & Sébastien Gal & Charly Rousseau & Alexandre Mamane & Dan Alin Ganea & Florent Haiss, 2024. "Coexistence of state, choice, and sensory integration coding in barrel cortex LII/III," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    5. Christina Mo & Claire McKinnon & S. Murray Sherman, 2024. "A transthalamic pathway crucial for perception," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Allen P. F. Chen & Lu Chen & Kaiyo W. Shi & Eileen Cheng & Shaoyu Ge & Qiaojie Xiong, 2023. "Nigrostriatal dopamine modulates the striatal-amygdala pathway in auditory fear conditioning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:561:y:2018:i:7724:d:10.1038_s41586-018-0527-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.