IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v559y2018i7714d10.1038_s41586-018-0273-1.html
   My bibliography  Save this article

An inverse latitudinal gradient in speciation rate for marine fishes

Author

Listed:
  • Daniel L. Rabosky

    (University of Michigan)

  • Jonathan Chang

    (University of California)

  • Pascal O. Title

    (University of Michigan)

  • Peter F. Cowman

    (Yale University
    ARC Centre of Excellence for Coral Reef Studies, James Cook University)

  • Lauren Sallan

    (University of Pennsylvania)

  • Matt Friedman

    (University of Michigan)

  • Kristin Kaschner

    (Albert-Ludwigs-University of Freiburg)

  • Cristina Garilao

    (GEOMAR Helmholtz-Zentrum für Ozeanforschung)

  • Thomas J. Near

    (Yale University)

  • Marta Coll

    (Spanish National Research Council (ICM-CSIC))

  • Michael E. Alfaro

    (University of California)

Abstract

Far more species of organisms are found in the tropics than in temperate and polar regions, but the evolutionary and ecological causes of this pattern remain controversial1,2. Tropical marine fish communities are much more diverse than cold-water fish communities found at higher latitudes3,4, and several explanations for this latitudinal diversity gradient propose that warm reef environments serve as evolutionary ‘hotspots’ for species formation5–8. Here we test the relationship between latitude, species richness and speciation rate across marine fishes. We assembled a time-calibrated phylogeny of all ray-finned fishes (31,526 tips, of which 11,638 had genetic data) and used this framework to describe the spatial dynamics of speciation in the marine realm. We show that the fastest rates of speciation occur in species-poor regions outside the tropics, and that high-latitude fish lineages form new species at much faster rates than their tropical counterparts. High rates of speciation occur in geographical regions that are characterized by low surface temperatures and high endemism. Our results reject a broad class of mechanisms under which the tropics serve as an evolutionary cradle for marine fish diversity and raise new questions about why the coldest oceans on Earth are present-day hotspots of species formation.

Suggested Citation

  • Daniel L. Rabosky & Jonathan Chang & Pascal O. Title & Peter F. Cowman & Lauren Sallan & Matt Friedman & Kristin Kaschner & Cristina Garilao & Thomas J. Near & Marta Coll & Michael E. Alfaro, 2018. "An inverse latitudinal gradient in speciation rate for marine fishes," Nature, Nature, vol. 559(7714), pages 392-395, July.
  • Handle: RePEc:nat:nature:v:559:y:2018:i:7714:d:10.1038_s41586-018-0273-1
    DOI: 10.1038/s41586-018-0273-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0273-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0273-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nathan M. Michielsen & Steven M. Goodman & Voahangy Soarimalala & Alexandra A. E. Geer & Liliana M. Dávalos & Grace I. Saville & Nathan Upham & Luis Valente, 2023. "The macroevolutionary impact of recent and imminent mammal extinctions on Madagascar," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Susanna Pla & Chiara Benvenuto & Isabella Capellini & Francesc Piferrer, 2022. "Switches, stability and reversals in the evolutionary history of sexual systems in fish," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Sarah T. Friedman & Martha M. Muñoz, 2023. "A latitudinal gradient of deep-sea invasions for marine fishes," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Theresa L. Cole & Chengran Zhou & Miaoquan Fang & Hailin Pan & Daniel T. Ksepka & Steven R. Fiddaman & Christopher A. Emerling & Daniel B. Thomas & Xupeng Bi & Qi Fang & Martin R. Ellegaard & Shaohong, 2022. "Genomic insights into the secondary aquatic transition of penguins," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Yuuki Y. Watanabe & Nicholas L. Payne, 2023. "Thermal sensitivity of metabolic rate mirrors biogeographic differences between teleosts and elasmobranchs," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Gregory Thom & Marcelo Gehara & Brian Tilston Smith & Cristina Y. Miyaki & Fábio Raposo Amaral, 2021. "Microevolutionary dynamics show tropical valleys are deeper for montane birds of the Atlantic Forest," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    7. Meng Xu & Shao-peng Li & Chunlong Liu & Pablo A. Tedesco & Jaimie T. A. Dick & Miao Fang & Hui Wei & Fandong Yu & Lu Shu & Xuejie Wang & Dangen Gu & Xidong Mu, 2024. "Global freshwater fish invasion linked to the presence of closely related species," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Jeremiah J. Minich & Andreas Härer & Joseph Vechinski & Benjamin W. Frable & Zachary R. Skelton & Emily Kunselman & Michael A. Shane & Daniela S. Perry & Antonio Gonzalez & Daniel McDonald & Rob Knigh, 2022. "Host biology, ecology and the environment influence microbial biomass and diversity in 101 marine fish species," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    9. Jason T Weir & Trevor D Price, 2019. "Song playbacks demonstrate slower evolution of song discrimination in birds from Amazonia than from temperate North America," PLOS Biology, Public Library of Science, vol. 17(10), pages 1-19, October.
    10. Felipe O. Cerezer & Cristian S. Dambros & Marco T. P. Coelho & Fernanda A. S. Cassemiro & Elisa Barreto & James S. Albert & Rafael O. Wüest & Catherine H. Graham, 2023. "Accelerated body size evolution in upland environments is correlated with recent speciation in South American freshwater fishes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Jianhua Wang & Guan-Zhu Han, 2023. "Genome mining shows that retroviruses are pervasively invading vertebrate genomes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Dimitar Dimitrov & Xiaoting Xu & Xiangyan Su & Nawal Shrestha & Yunpeng Liu & Jonathan D. Kennedy & Lisha Lyu & David Nogués-Bravo & James Rosindell & Yong Yang & Jon Fjeldså & Jianquan Liu & Bernhard, 2023. "Diversification of flowering plants in space and time," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    13. Maxime Policarpo & Maude W. Baldwin & Didier Casane & Walter Salzburger, 2024. "Diversity and evolution of the vertebrate chemoreceptor gene repertoire," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    14. Isaac Trindade-Santos & Faye Moyes & Anne E. Magurran, 2022. "Global patterns in functional rarity of marine fish," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Jamie B. Thompson & Tania Hernández-Hernández & Georgia Keeling & Marilyn Vásquez-Cruz & Nicholas K. Priest, 2024. "Identifying the multiple drivers of cactus diversification," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Jan Smyčka & Anna Toszogyova & David Storch, 2023. "The relationship between geographic range size and rates of species diversification," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:559:y:2018:i:7714:d:10.1038_s41586-018-0273-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.