IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v559y2018i7712d10.1038_s41586-018-0262-4.html
   My bibliography  Save this article

Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus

Author

Listed:
  • Christoph Anacker

    (Columbia University and Research Foundation for Mental Hygiene, New York State Psychiatric Institute)

  • Victor M. Luna

    (Columbia University and Research Foundation for Mental Hygiene, New York State Psychiatric Institute)

  • Gregory S. Stevens

    (Columbia University and Research Foundation for Mental Hygiene, New York State Psychiatric Institute)

  • Amira Millette

    (Columbia University and Research Foundation for Mental Hygiene, New York State Psychiatric Institute)

  • Ryan Shores

    (Columbia University and Research Foundation for Mental Hygiene, New York State Psychiatric Institute)

  • Jessica C. Jimenez

    (Columbia University and Research Foundation for Mental Hygiene, New York State Psychiatric Institute)

  • Briana Chen

    (Columbia University and Research Foundation for Mental Hygiene, New York State Psychiatric Institute)

  • René Hen

    (Columbia University and Research Foundation for Mental Hygiene, New York State Psychiatric Institute
    Columbia University
    Columbia University)

Abstract

Adult neurogenesis in the dentate gyrus of the hippocampus is highly regulated by environmental influences, and functionally implicated in behavioural responses to stress and antidepressants1–4. However, how adult-born neurons regulate dentate gyrus information processing to protect from stress-induced anxiety-like behaviour is unknown. Here we show in mice that neurogenesis confers resilience to chronic stress by inhibiting the activity of mature granule cells in the ventral dentate gyrus (vDG), a subregion that is implicated in mood regulation. We found that chemogenetic inhibition of adult-born neurons in the vDG promotes susceptibility to social defeat stress, whereas increasing neurogenesis confers resilience to chronic stress. By using in vivo calcium imaging to record neuronal activity from large cell populations in the vDG, we show that increased neurogenesis results in a decrease in the activity of stress-responsive cells that are active preferentially during attacks or while mice explore anxiogenic environments. These effects on dentate gyrus activity are necessary and sufficient for stress resilience, as direct silencing of the vDG confers resilience whereas excitation promotes susceptibility. Our results suggest that the activity of the vDG may be a key factor in determining individual levels of vulnerability to stress and related psychiatric disorders.

Suggested Citation

  • Christoph Anacker & Victor M. Luna & Gregory S. Stevens & Amira Millette & Ryan Shores & Jessica C. Jimenez & Briana Chen & René Hen, 2018. "Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus," Nature, Nature, vol. 559(7712), pages 98-102, July.
  • Handle: RePEc:nat:nature:v:559:y:2018:i:7712:d:10.1038_s41586-018-0262-4
    DOI: 10.1038/s41586-018-0262-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0262-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0262-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomas H. Lee & Malegaddi Devaki & Douglas A. Formolo & Julia M. Rosa & Andy S. K. Cheng & Suk-Yu Yau, 2023. "Effects of Voluntary Wheel Running Exercise on Chemotherapy-Impaired Cognitive and Motor Performance in Mice," IJERPH, MDPI, vol. 20(7), pages 1-17, April.
    2. Ayelet M. Rosenberg & Manish Saggar & Anna S. Monzel & Jack Devine & Peter Rogu & Aaron Limoges & Alex Junker & Carmen Sandi & Eugene V. Mosharov & Dani Dumitriu & Christoph Anacker & Martin Picard, 2023. "Brain mitochondrial diversity and network organization predict anxiety-like behavior in male mice," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Nahoko Kuga & Ryota Nakayama & Shota Morikawa & Haruya Yagishita & Daichi Konno & Hiromi Shiozaki & Natsumi Honjoya & Yuji Ikegaya & Takuya Sasaki, 2023. "Hippocampal sharp wave ripples underlie stress susceptibility in male mice," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. M. Agustina Frechou & Sunaina S. Martin & Kelsey D. McDermott & Evan A. Huaman & Şölen Gökhan & Wolfgang A. Tomé & Ruben Coen-Cagli & J. Tiago Gonçalves, 2024. "Adult neurogenesis improves spatial information encoding in the mouse hippocampus," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:559:y:2018:i:7712:d:10.1038_s41586-018-0262-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.