IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39941-0.html
   My bibliography  Save this article

Brain mitochondrial diversity and network organization predict anxiety-like behavior in male mice

Author

Listed:
  • Ayelet M. Rosenberg

    (Columbia University Irving Medical Center)

  • Manish Saggar

    (Stanford University)

  • Anna S. Monzel

    (Columbia University Irving Medical Center)

  • Jack Devine

    (Columbia University Irving Medical Center)

  • Peter Rogu

    (Columbia University Irving Medical Center)

  • Aaron Limoges

    (Columbia University
    Columbia University Irving Medical Center)

  • Alex Junker

    (Columbia University Irving Medical Center)

  • Carmen Sandi

    (Brain Mind Institute, Ecole Polytechnique Federal de Lausanne (EPFL))

  • Eugene V. Mosharov

    (Columbia University Irving Medical Center
    New York State Psychiatric Institute)

  • Dani Dumitriu

    (Columbia University Irving Medical Center
    Columbia University Irving Medical Center
    Columbia University Irving Medical Center)

  • Christoph Anacker

    (Columbia University Irving Medical Center
    Columbia University Irving Medical Center
    New York State Psychiatric Institute)

  • Martin Picard

    (Columbia University Irving Medical Center
    New York State Psychiatric Institute
    Columbia University Irving Medical Center
    Columbia University Mailman School of Public Health)

Abstract

The brain and behavior are under energetic constraints, limited by mitochondrial energy transformation capacity. However, the mitochondria-behavior relationship has not been systematically studied at a brain-wide scale. Here we examined the association between multiple features of mitochondrial respiratory chain capacity and stress-related behaviors in male mice with diverse behavioral phenotypes. Miniaturized assays of mitochondrial respiratory chain enzyme activities and mitochondrial DNA (mtDNA) content were deployed on 571 samples across 17 brain areas, defining specific patterns of mito-behavior associations. By applying multi-slice network analysis to our brain-wide mitochondrial dataset, we identified three large-scale networks of brain areas with shared mitochondrial signatures. A major network composed of cortico-striatal areas exhibited the strongest mitochondria-behavior correlations, accounting for up to 50% of animal-to-animal behavioral differences, suggesting that this mito-based network is functionally significant. The mito-based brain networks also overlapped with regional gene expression and structural connectivity, and exhibited distinct molecular mitochondrial phenotype signatures. This work provides convergent multimodal evidence anchored in enzyme activities, gene expression, and animal behavior that distinct, behaviorally-relevant mitochondrial phenotypes exist across the male mouse brain.

Suggested Citation

  • Ayelet M. Rosenberg & Manish Saggar & Anna S. Monzel & Jack Devine & Peter Rogu & Aaron Limoges & Alex Junker & Carmen Sandi & Eugene V. Mosharov & Dani Dumitriu & Christoph Anacker & Martin Picard, 2023. "Brain mitochondrial diversity and network organization predict anxiety-like behavior in male mice," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39941-0
    DOI: 10.1038/s41467-023-39941-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39941-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39941-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Manja Wachsmuth & Alexander Hübner & Mingkun Li & Burkhard Madea & Mark Stoneking, 2016. "Age-Related and Heteroplasmy-Related Variation in Human mtDNA Copy Number," PLOS Genetics, Public Library of Science, vol. 12(3), pages 1-21, March.
    2. Kevin Mann & Stephane Deny & Surya Ganguli & Thomas R. Clandinin, 2021. "Coupling of activity, metabolism and behaviour across the Drosophila brain," Nature, Nature, vol. 593(7858), pages 244-248, May.
    3. Ed S. Lein & Michael J. Hawrylycz & Nancy Ao & Mikael Ayres & Amy Bensinger & Amy Bernard & Andrew F. Boe & Mark S. Boguski & Kevin S. Brockway & Emi J. Byrnes & Lin Chen & Li Chen & Tsuey-Ming Chen &, 2007. "Genome-wide atlas of gene expression in the adult mouse brain," Nature, Nature, vol. 445(7124), pages 168-176, January.
    4. Roger Guimerà & Luís A. Nunes Amaral, 2005. "Functional cartography of complex metabolic networks," Nature, Nature, vol. 433(7028), pages 895-900, February.
    5. Christoph Anacker & Victor M. Luna & Gregory S. Stevens & Amira Millette & Ryan Shores & Jessica C. Jimenez & Briana Chen & René Hen, 2018. "Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus," Nature, Nature, vol. 559(7712), pages 98-102, July.
    6. Seung Wook Oh & Julie A. Harris & Lydia Ng & Brent Winslow & Nicholas Cain & Stefan Mihalas & Quanxin Wang & Chris Lau & Leonard Kuan & Alex M. Henry & Marty T. Mortrud & Benjamin Ouellette & Thuc Ngh, 2014. "A mesoscale connectome of the mouse brain," Nature, Nature, vol. 508(7495), pages 207-214, April.
    7. Choong-Wan Woo & Leonie Koban & Ethan Kross & Martin A. Lindquist & Marie T. Banich & Luka Ruzic & Jessica R. Andrews-Hanna & Tor D. Wager, 2014. "Separate neural representations for physical pain and social rejection," Nature Communications, Nature, vol. 5(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harry Carey & Michael Pegios & Lewis Martin & Chris Saleeba & Anita J. Turner & Nicholas A. Everett & Ingvild E. Bjerke & Maja A. Puchades & Jan G. Bjaalie & Simon McMullan, 2023. "DeepSlice: rapid fully automatic registration of mouse brain imaging to a volumetric atlas," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Dongsheng Xiao & Brandon J. Forys & Matthieu P. Vanni & Timothy H. Murphy, 2021. "MesoNet allows automated scaling and segmentation of mouse mesoscale cortical maps using machine learning," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    3. Jun Ding & Jian Ji & Zachary Rabow & Tong Shen & Jacob Folz & Christopher R. Brydges & Sili Fan & Xinchen Lu & Sajjan Mehta & Megan R. Showalter & Ying Zhang & Renee Araiza & Lynette R. Bower & K. C. , 2021. "A metabolome atlas of the aging mouse brain," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Stuart Oldham & Gareth Ball, 2023. "A phylogenetically-conserved axis of thalamocortical connectivity in the human brain," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Luis M. Franco & Michael J. Goard, 2024. "Differential stability of task variable representations in retrosplenial cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Minchao Wang & Wu Zhang & Wang Ding & Dongbo Dai & Huiran Zhang & Hao Xie & Luonan Chen & Yike Guo & Jiang Xie, 2014. "Parallel Clustering Algorithm for Large-Scale Biological Data Sets," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-9, April.
    7. S. Vickovic & B. Lötstedt & J. Klughammer & S. Mages & Å Segerstolpe & O. Rozenblatt-Rosen & A. Regev, 2022. "SM-Omics is an automated platform for high-throughput spatial multi-omics," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Tinic, Murat & Sensoy, Ahmet & Demir, Muge & Nguyen, Duc Khuong, 2020. "Broker Network Connectivity and the Cross-Section of Expected Stock Returns," MPRA Paper 104719, University Library of Munich, Germany.
    9. Christian F A Negre & Hayato Ushijima-Mwesigwa & Susan M Mniszewski, 2020. "Detecting multiple communities using quantum annealing on the D-Wave system," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-14, February.
    10. Wenqi Chen & Jiejunyi Liang & Qiyun Wu & Yunyun Han, 2024. "Anterior cingulate cortex provides the neural substrates for feedback-driven iteration of decision and value representation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Wen-Hao Zhang & Si Wu & Krešimir Josić & Brent Doiron, 2023. "Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    12. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    13. Léa J. Becker & Clémentine Fillinger & Robin Waegaert & Sarah H. Journée & Pierre Hener & Beyza Ayazgok & Muris Humo & Meltem Karatas & Maxime Thouaye & Mithil Gaikwad & Laetitia Degiorgis & Marie des, 2023. "The basolateral amygdala-anterior cingulate pathway contributes to depression-like behaviors and comorbidity with chronic pain behaviors in male mice," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    14. Alessandra Griffa & Mathieu Mach & Julien Dedelley & Daniel Gutierrez-Barragan & Alessandro Gozzi & Gilles Allali & Joanes Grandjean & Dimitri Ville & Enrico Amico, 2023. "Evidence for increased parallel information transmission in human brain networks compared to macaques and male mice," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    15. Anthony Renard & Evan R. Harrell & Brice Bathellier, 2022. "Olfactory modulation of barrel cortex activity during active whisking and passive whisker stimulation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    16. Manish Saggar & James M. Shine & Raphaël Liégeois & Nico U. F. Dosenbach & Damien Fair, 2022. "Precision dynamical mapping using topological data analysis reveals a hub-like transition state at rest," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    17. Marcus N. Leiwe & Satoshi Fujimoto & Toshikazu Baba & Daichi Moriyasu & Biswanath Saha & Richi Sakaguchi & Shigenori Inagaki & Takeshi Imai, 2024. "Automated neuronal reconstruction with super-multicolour Tetbow labelling and threshold-based clustering of colour hues," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    18. Wei Liu & Xu Liao & Ziye Luo & Yi Yang & Mai Chan Lau & Yuling Jiao & Xingjie Shi & Weiwei Zhai & Hongkai Ji & Joe Yeong & Jin Liu, 2023. "Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    19. Xue Wen & Delong Zhang & Bishan Liang & Ruibin Zhang & Zengjian Wang & Junjing Wang & Ming Liu & Ruiwang Huang, 2015. "Reconfiguration of the Brain Functional Network Associated with Visual Task Demands," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-16, July.
    20. Attila Mester & Andrei Pop & Bogdan-Eduard-Mădălin Mursa & Horea Greblă & Laura Dioşan & Camelia Chira, 2021. "Network Analysis Based on Important Node Selection and Community Detection," Mathematics, MDPI, vol. 9(18), pages 1-16, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39941-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.